

1663GE – Chippenham Town Hall, Decarbonisation DESIGN STATEMENT AND STRUCTURAL CALCULATIONS May 2025

Document

Project name Chippenham Town Hall, Decarbonisation		
Project ref	1663GE	
Client name	Chippenham Town Council	
Project address	Idress Neeld Community and Arts Centre, Borough Parade, Chippenham SN15 3WL	
Document name	Design Statement and Structural Calculations	
Document ref	1663GE – 001	
Document author Ralph Pelly MEng (Hons) CEng MIStructE Approved by Ralph Pelly MEng (Hons) CEng MIStructE		

Version Control

Revision Date Authorised / 12/06/25 Ralph Pelly		Authorised	Description
/	12/06/25	Ralph Pelly	First issue.

Contents

1	Desig	n Statement	4
	1.1	General Project Information	4
	1.2	Design principles	4
	1.3	Design standards	6
2	Loadi	ng	7
	2.1	Permanent loads	7
	2.2	Imposed loads	8
3	Stabi	ity	8
4	Chee	se Hall	9
	4.1	Second Floor	9
5	Towr	Hall	10
	5.1	Services in roof space	10
	5.2	Plant on roof	10
Α	ppendix	2: Calculation references	13

1 Design Statement

1.1 General Project Information

1.1.1 The Project

The project involves installation of new mechanical and electrical services:

- 1. In the Cheese Hall, serving the main hall
- 2. On the roof of the Town Hall and within the roof space above the Town Hall, serving the Town Hall.

The scope of service provided by Giraffe Engineering is to verify the capacity of the existing structure to support any newly applied design loads from the proposed services, and to design and specify any alterations required to the existing structure in order to facilitate the proposals and to strengthen the existing structure where necessary.

1.1.2 Existing structures

The existing structures comprise a group of interconnected buildings in Chippenham Town Centre, including the Chippenham Town Hall building, the Neeld Community and Arts Centre and the 'Cheese Hall' which adjoins the Neeld Community and Arts Centre Main Hall.

The existing structures are of masonry construction typically with timber floor joists and timber roof structure.

1.1.3 Contractor Designed Elements

Contractor designed elements are listed below:

- 1. Temporary works
- 2. Secondary steelwork for cladding and services
- 3. Access walkway to roof spaces

Where applicable, Giraffe Engineering will review fabrication drawings for design conformity and general conformance to contract documents only. The contractor is responsible for confirming dimensions and full compliance with contract documents.

1.2 Design principles

1.2.1 Disproportionate collapse and robustness

The Building is Class 2A in accordance with the Building Regulations. Resultantly, effective anchorage of floors and roofs to walls is provided by full embedment of floor plates into load bearing walls or provision of mechanical anchorage around floor plate perimeters.

1.2.2 Design working life

The design working life of the structural proposals is 50 years, in accordance with BS EN 1990 Table 2.1 Category 4, 'normal' category of building.

1.2.3 Fire Resistance

Fire protection is to be specified by others.

Fire protection of timber and steelwork is to be provided by plasterboard finishes unless noted otherwise.

1.3 Design standards

1.3.1 Reference documents

The structural design has been carried out in accordance with the following standards:

- BS EN 1990 Basis of structural design
- BS EN 1991-1-1 Actions on structures Building loads
- BS EN 1991-1-3 Actions on structures Snow loads
- BS EN 1991-1-4 Actions on structures Wind loads
- BS EN 1992-1-1 Design of concrete structures
- BS EN 1993-1-1 Design of steel structures
- BS EN 1995-1-1 Design of timber structures
- BS EN 1996-1-1 Design of masonry structures
- Building Regulations Approved document A

1.3.2 Deflection Limits

Standard deflection limits have been adopted, as per the recommendation given in the Eurocodes including their National Annexes.

Typically, these are as listed below unless noted otherwise:

Load case	Deflection limit	
Live load only	Span/360	
Live load only, over glazing, sliding doors, bifold doors	Span/500, maximum 10mm	
Dead + live load, with brittle finishes such as plasterboard (including creep deflection)	Span/250 (maximum 14mm for inhabited floors)	
Dead + live load, without brittle finishes (including creep deflection)	Span/125 (maximum 14mm for inhabited floors)	
Lateral deflection of columns	Height/300 in total and per storey (maximum 10mm per storey)	

2 Loading

2.1 Permanent loads

G1 - Flat roof	kN/m²
Lead roof covering, assume max 4mm thick	0.4
Sheathing	0.20
Roof joists	0.10
Ceiling, services and insulation	0.1
Total	0.9
G2 - Internal timber floor	kN/m²
Finishes	0.10
Floorboards	0.10
Joists (150x50 @400c/c)	0.15
Ceiling and services	0.15
Total	0.5
G3 - Attic floor	kN/m²
Attic services	0.2
Insulation	0.05
Ceiling joists	0.1
Plasterboard ceiling, 15mm	0.15

0.1

Services below ceiling

Total

G4 -	kN/m ²
Single skin masonry wall	
Brickwork (100mm)	2.10
Dense block	2.00
Lightweight block	1.00
Insulation	0.05
Timber rainscreen	0.15
Total	2.10

2.2 Imposed loads

Q1 - Storage Area	kN/m²
Category E11, storage area	2.0
Total	2.0
Q2 - Roof	kN/m²
Category H, maintenance	0.75
Total	0.60
Q3 - Roof space	kN/m²
Category H, maintenance	0.60
Total	0.60

3 Stability

Stability of the existing structures is achieved by masonry shear walls in both orthogonal directions transferring lateral loads into the foundations. Floor boards/decking at internal floor levels and bracing/trusses at roof level act as horizontal diaphragms to convey lateral loads to the masonry shear walls.

The proposed alterations will not impair the existing stability systems.

4 Cheese Hall

4.1 Second Floor

4.1.1 Second floor joists

Span = 6.4m Centres = 350mm Size 50 x 295mm

Loading:

Existing floor loading:

DL (G2 internal floor) = 0.5kN/m² x 0.35 = 0.175 kN/m IL (Q1 storage area) = 2.0kN/m² x 0.35 = 0.7 kN/m

New plant loading:

Heat pump ancilliaries, e.g. buffer vessel (150kg), expansion vessels (30kg), pressurisation unit (5kg) and pumps (4No, 2.5kg each) + allowance for pipework and valves.

Spread over area approx. $1.2 \times 1.2 \text{m} = 1.44 \text{m}^2$ Total load = 245 kg = 2.45 kN $2.45 / 1.44 = 1.7 \text{ kN/m}^2$

Therefore loading from new plant is within the design imposed loading of 2.0 kN/m².

Calc ref:

PASS C401

5 Town Hall

5.1 Services in roof space

New ventilation ducts and walkway to be installed within roof space above town hall.

Design imposed load on walkway = 0.6 kN/m^2

Design dead load due to services = 0.2 kN/m²

4No. primary timber trusses, at approx. 3.0m centres

5.1.1 Ceiling joists supporting new services

Ceiling joists 50 x 100 at 400 centres, span between primary truss bottom chords.

Span = 3.0m

Centres = 400mm

Loading:

DL (G3 attic floor) = $0.6 \times 0.4 = 0.24 \text{ kN/m}$

LL = 0.25 kN/m^2 (allowance for storage) = 0.1 kN/m

PASS

Calc ref:

Existing joists can support additional load of services.

C501

5.1.2 Ceiling joists supporting new walkway

Loading:

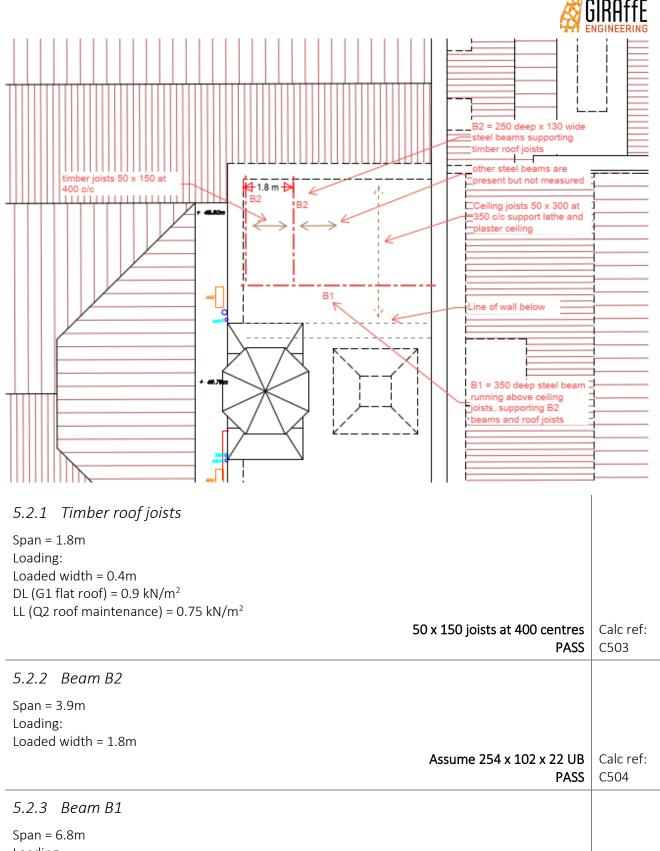
DL (G3 attic floor) = $0.6 \times 0.4 = 0.24 \text{ kN/m}$

LL (Q3 roof space) = $0.6 \text{ kN/m}^2 \times 0.4 = 0.24 \text{ kN/m}$

PASS

Recommended deflection limit of span/250 is exceeded.

Deflection limit relaxed to span/180.


Calc ref: C502

5.2 Plant on roof

New AHU installed on roof of town hall adjacent to existing roof plant enclosure.

Existing roof structure consists of timber joists and steel beam grid:

Loading:

Loaded width = 5.2/2 = 2.6m

Assume 356 x 127 x 33 UB

PASS | C5

C505

11 of 13

The existing roof structure is sufficient to support the proposed new plant loading.

Appendix 2: Calculation references

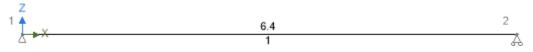
Giraffe Engineering			
5 Union Road			
Chippenham SN15 1HW			

Project				Job no.	
	1663				
Calcs for			Start page no./Revision		
		1			
Calcs by RP	Calcs date 08/05/2025	Checked by	Checked date	Approved by	Approved date

TIMBER MEMBER ANALYSIS & DESIGN (EN1995-1-1:2004)

In accordance with EN1995-1-1:2004 + A2:2014 incorporating corrigendum June 2006 and the UK national annex

Tedds calculation version 2.2.20


Beam results summary	Unit	Capacity	Maximum	Utilisation	Result
Bearing stress	N/mm ²	2.5	0.7	0.265	PASS
Bending stress	N/mm ²	16.2	9.7	0.595	PASS
Shear stress	N/mm ²	2.7	0.7	0.245	PASS
Deflection	mm	25.6	25.3	0.987	PASS

ANALYSIS

Tedds calculation version 1.0.37

Geometry

Geometry (m) - C24 (EC5) - 50x295

Span Length (m) Section		Start Support	End Support	
1	6.4	50x295	Pinned	Roller Pin X

50x295: Area 147 cm², Inertia Major 10697 cm⁴, Inertia Minor 307 cm⁴, Shear area parallel to Minor 123 cm², Shear area parallel to Major = 123 cm²

C24 (EC5): Density 420 kg/m³, Youngs 11 kN/mm², Shear 0.69 kN/mm², Thermal 0 °C-1

Loading

Self weight included

Permanent - Loading (kN/m)

Imposed - Loading (kN/m)

Load combination factors

Load combination	Self Weight	Permanent	Imposed
1.35G + 1.5Q + 1.5RQ (Strength)	1.35	1.35	1.50
1.0G + 1.0Q + 1.0RQ (Service)	1.00	1.00	1.00

Member Loads

Member	Load case	Load Type	Orientation	Description
Beam	Permanent	UDL	GlobalZ	0.18 kN/m

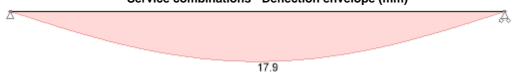
5 Union Road Chippenham SN15 1HW

Project				Job no.	
	16	63			
Calcs for	Start page no./Revision				
		2			
Calcs by RP	Calcs date 08/05/2025	Checked by	Checked date	Approved by	Approved date

Member	Load case	Load Type	Orientation	Description
Beam	Imposed	UDL	GlobalZ	0.7 kN/m

Results

Forces


Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

Service combinations - Deflection envelope (mm)

Beam - Span 1

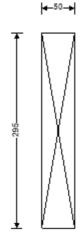
Partial factor for material properties and resistances

Partial factor for material properties - Table 2.3 $\gamma_{\rm M} = 1.300$

Member details

Load duration - cl.2.3.1.2 Medium-term

Service class - cl.2.3.1.3


Timber section details

Timber strength class - EN 338:2016 Table 1 C24

5 Union Road Chippenham SN15 1HW

Project				Job no.	
	Chippenhar	16	63		
Calcs for		Start page no./Re	vision		
	C401: Cheese	Hall SF joists		:	3
Calcs by RP	Calcs date 08/05/2025	Checked by	Checked date	Approved by	Approved date

50x295 timber section

Cross-sectional area, A, 14750 mm²
Section modulus, W, 725208.3 mm³
Section modulus, W, 122917 mm³
Second moment of area, I, 106968229 mm³
Second moment of area, I, 3072917 mm³
Radius of gyration, I, 85.2 mm
Radius of gyration, I, 14.4 mm
Timber strength class C24

Characteristic bending strength, $\mathbf{f}_{m,k}$, 24 N/mm² Characteristic shear strength, $\mathbf{f}_{m,k}$, 4 N/mm² Characteristic compression strength parallel to grain, \mathbf{f}

Characteristic compression strength parallel to grain, $\mathbf{f}_{c,s,s'}$ 21 N/mm² Characteristic compression strength perpendicular to grain, $\mathbf{f}_{c,ss,s'}$ 2.5 N/mm² Characteristic tension strength parallel to grain, $\mathbf{f}_{c,ss,s'}$ 14.5 N/mm²

Mean modulus of elasticity, $E_{o,mean}$, 11000 N/mm² Fifth percentile modulus of elasticity, $E_{o,ast}$, 7400 N/mm² Shear modulus of elasticity, G_{mean} , 690 N/mm²

Characteristic density, ρ_{s} , 350 kg/m³ Mean density, ρ_{mean} , 420 kg/m³

Span details

Bearing length $L_b = 100 \text{ mm}$

Consider Combination 1 - 1.35G + 1.5Q + 1.5RQ (Strength)

Modification factors

Duration of load and moisture content - Table 3.1 $k_{mod} = 0.8$ Deformation factor - Table 3.2 $k_{def} = 0.6$ Bending stress re-distribution factor - cl.6.1.6(2) $k_{m} = 0.7$ Crack factor for shear resistance - cl.6.1.7(2) $k_{cr} = 0.67$ Load configuration factor - cl.6.1.5(4) $k_{c,90} = 1.5$ System strength factor - cl.6.6 $k_{sys} = 1.1$

Check design at start of span

Check compression perpendicular to the grain - cl.6.1.5

Design perpendicular compression - major axis $F_{c,y,90,d} = 4.378 \text{ kN}$

Effective contact length $L_{b,ef} = L_b + min(L_b, 30 \text{ mm}) = 130 \text{ mm}$ Design perpendicular compressive stress - exp.6.4 $\sigma_{c,y,90,d} = F_{c,y,90,d} / (b \times L_{b,ef}) = 0.674 \text{ N/mm}^2$ Design perpendicular compressive strength $f_{c,y,90,d} = k_{mod} \times k_{sys} \times f_{c,90,k} / \gamma_M = 1.692 \text{ N/mm}^2$

 $\sigma_{c,y,90,d} / (k_{c,90} \times f_{c,y,90,d}) = 0.265$

PASS - Design perpendicular compression strength exceeds design perpendicular compression stress

Check shear force - Section 6.1.7

Design shear force $F_{y,d} = 4.378 \text{ kN}$

Design shear stress - exp.6.60 $\tau_{y,d} = 1.5 \times F_{y,d} / (k_{cr} \times b \times h) = \textbf{0.665 N/mm}^2$ Design shear strength $f_{v,y,d} = k_{mod} \times k_{sys} \times f_{v,k} / \gamma_{M} = \textbf{2.708 N/mm}^2$

 $\tau_{y,d} / f_{v,y,d} = 0.245$

PASS - Design shear strength exceeds design shear stress

Check design 3200 mm along span

Check bending moment - Section 6.1.6

Design bending moment $M_{y,d} = 7.006 \text{ kNm}$

Design bending stress $\sigma_{m,y,d} = M_{y,d} / W_y = 9.66 \text{ N/mm}^2$

Design bending strength $f_{m,y,d} = k_{mod} \times k_{sys} \times f_{m,k} / \gamma_{M} = 16.246 \text{ N/mm}^2$

Giraffe Engineering 5 Union Road Chippenham SN15 1HW

Project				Job no.	
Chippenham Town Hall					63
Calcs for				Start page no./Re	vision
C401: Cheese Hall SF joists					4
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
RP	08/05/2025				

 $\sigma_{m,y,d}$ / $f_{m,y,d}$ = 0.595

PASS - Design bending strength exceeds design bending stress

Consider Combination 2 - 1.0G + 1.0Q + 1.0RQ (Service)

Check design 3200 mm along span

Check y-y axis deflection - Section 7.2

Instantaneous deflection $\delta_{y} = \mbox{17.9 mm}$ Quasi-permanent variable load factor $\psi_{2} = \mbox{0.6}$

Final deflection with creep $\delta_{y,\text{Final}} = 0.2 \times \delta_y \times (1 + k_{\text{def}}) + 0.8 \times \delta_y \times (1 + \psi_2 \times k_{\text{def}}) = \textbf{25.3} \text{ mm}$

Allowable deflection $\delta_{y,Allowable} = L_{m1_s1} / 250 = 25.6 \text{ mm}$

 $\delta_{\text{y,Final}} / \delta_{\text{y,Allowable}} = \textbf{0.987}$

PASS - Allowable deflection exceeds final deflection

5 Union Road Chippenham SN15 1HW

Project				Job no.	
Chippenham Town Hall					3GE
Calcs for	Start page no./Re	vision			
C50		1			
Calcs by RP	Calcs date 08/05/2025	Checked by	Checked date	Approved by	Approved date

TIMBER MEMBER ANALYSIS & DESIGN (EN1995-1-1:2004)

In accordance with EN1995-1-1:2004 + A2:2014 incorporating corrigendum June 2006 and the UK national annex

Tedds calculation version 2.2.20


Beam results summary	Unit	Capacity	Maximum	Utilisation	Result
Bearing stress	N/mm ²	2.9	0.1	0.041	PASS
Bending stress	N/mm ²	19.8	6.8	0.342	PASS
Shear stress	N/mm ²	3.0	0.3	0.111	PASS
Beam stability check				0.342	PASS
Deflection	mm	12	11.0	0.914	PASS

ANALYSIS

Tedds calculation version 1.0.37

Geometry

Geometry (m) - C24 (EC5) - 50x100

Span	Length (m)	Section	Start Support	End Support
1	3	50x100	Pinned	Roller Pin X

50x100: Area 50 cm², Inertia Major 417 cm⁴, Inertia Minor 104 cm⁴, Shear area parallel to Minor 42 cm², Shear area parallel to Major = 42 cm²

C24 (EC5): Density 420 kg/m³, Youngs 11 kN/mm², Shear 0.69 kN/mm², Thermal 0 °C-1

Loading

Self weight included

Permanent - Loading (kN/m)

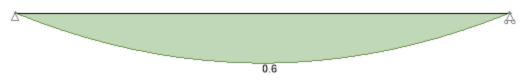
Imposed - Loading (kN/m)

Load combination factors

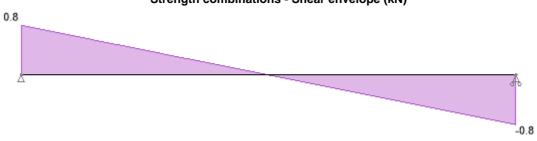
Load combination	Self Weight	Permanent	pesodul
1.35G + 1.5Q + 1.5RQ (Strength)	1.35	1.35	1.50
1.0G + 1.0Q + 1.0RQ (Service)	1.00	1.00	1.00

5 Union Road Chippenham SN15 1HW

Project				Job no.	
Chippenham Town Hall				166	3GE
Calcs for			Start page no./Revision		
C501 ceiling joists - supporting services					2
Calcs by RP	Calcs date 08/05/2025	Checked by	Checked date	Approved by	Approved date


Member Loads

Member	Load case	Load Type	Orientation	Description
Beam	Permanent	UDL	GlobalZ	0.24 kN/m
Beam	Imposed	UDL	GlobalZ	0.1 kN/m


Results

Forces


Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

Service combinations - Deflection envelope (mm)

Beam - Span 1

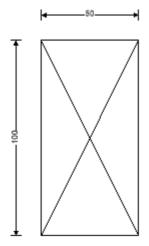
Partial factor for material properties and resistances

Partial factor for material properties - Table 2.3 $\gamma_M = 1.300$

Member details

Load duration - cl.2.3.1.2 Short-term

Service class - cl.2.3.1.3


Timber section details

Number of timber sections in member N=1 Breadth of sections b=50 mm Depth of sections h=100 mm Timber strength class - EN 338:2016 Table 1 C24

5 Union Road Chippenham SN15 1HW

Project				Job no.	
	Chippenha	166	3GE		
Calcs for			Start page no./Revision		
C	C501 ceiling joists - supporting services				3
Calcs by RP	Calcs date 08/05/2025	Checked by	Checked date	Approved by	Approved date

50x100 timber section

Cross-sectional area, A, 5000 mm² Section modulus, W₂, 83333.3 mm³ Section modulus, W₂, 41667 mm³ Second moment of area, I₂, 4166667 mm⁴ Second moment of area, I₂, 1041667 mm⁴ Radius of gyration, I₂, 28.9 mm Radius of gyration, I₂, 14.4 mm

Timber strength class C24
Characteristic bending strength, f_{ma} , 24 N/mm²
Characteristic shear strength, f_{a} , 4 N/mm²

Characteristic compression strength parallel to grain, $f_{_{0.0.k}}$, 21 N/mm² Characteristic compression strength perpendicular to grain, $f_{_{0.0.k}}$, 2.5 N/mm² Characteristic tension strength parallel to grain, $f_{_{0.0.k}}$, 14.5 N/mm²

Mean modulus of elasticity, E_{0.0001}, 11000 N/mm²
Fifth percentile modulus of elasticity, E_{0.00}, 7400 N/mm²
Shear modulus of elasticity, G_{0.0001}, 690 N/mm²
Characteristic density, p₀, 350 kg/m²

Mean density, p_{moon}, 420 kg/m³

Span details

Bearing length $L_b = 100 \text{ mm}$

Consider Combination 1 - 1.35G + 1.5Q + 1.5RQ (Strength)

Modification factors

Duration of load and moisture content - Table 3.1 $k_{mod} = 0.9$ Deformation factor - Table 3.2 $k_{def} = 0.6$

Depth factor for bending - Major axis - exp.3.1 $k_{h,m,y} = min((150 \text{ mm / h})^{0.2}, 1.3) = 1.084$

Bending stress re-distribution factor - cl.6.1.6(2) $k_m = 0.7$ Crack factor for shear resistance - cl.6.1.7(2) $k_{cr} = 0.67$ Load configuration factor - cl.6.1.5(4) $k_{c,90} = 1.5$ System strength factor - cl.6.6 $k_{sys} = 1.1$

Check design at start of span

Check compression perpendicular to the grain - cl.6.1.5

Design perpendicular compression - major axis $F_{c,y,90,d} = 0.753 \text{ kN}$

Effective contact length $L_{b,ef} = L_b + min(L_b, 30 \text{ mm}) = 130 \text{ mm}$ Design perpendicular compressive stress - exp.6.4 $\sigma_{c,y,90,d} = F_{c,y,90,d} / (b \times L_{b,ef}) = 0.116 \text{ N/mm}^2$ Design perpendicular compressive strength $f_{c,y,90,d} = k_{mod} \times k_{sys} \times f_{c,90,k} / \gamma_M = 1.904 \text{ N/mm}^2$

 $\sigma_{c,y,90,d} / (k_{c,90} \times f_{c,y,90,d}) = 0.041$

PASS - Design perpendicular compression strength exceeds design perpendicular compression stress

Check shear force - Section 6.1.7

Design shear force $F_{y,d} = 0.753 \text{ kN}$

Design shear stress - exp.6.60 $\tau_{y,d} = 1.5 \times F_{y,d} / (k_{cr} \times b \times h) = \textbf{0.337 N/mm}^2$ Design shear strength $f_{v,y,d} = k_{mod} \times k_{sys} \times f_{v,k} / \gamma_{M} = \textbf{3.046 N/mm}^2$

 $\tau_{y,d} \, / \, f_{v,y,d} = \textbf{0.111}$

PASS - Design shear strength exceeds design shear stress

Check design 1500 mm along span

Check bending moment - Section 6.1.6

Design bending moment $M_{y,d} = 0.565 \text{ kNm}$

Design bending stress $\sigma_{m,y,d} = M_{y,d} / W_y = 6.774 \text{ N/mm}^2$

Giraffe Engineering 5 Union Road

Chippenham SN15 1HW

Project				Job no.	
	166	3GE			
Calcs for	Start page no./Revision				
C501 ceiling joists - supporting services				4	
Calcs by RP	Calcs date 08/05/2025	Checked by	Checked date	Approved by	Approved date

Design bending strength $f_{\text{m,y,d}} = k_{\text{h,m,y}} \times k_{\text{mod}} \times k_{\text{sys}} \times f_{\text{m.k}} \, / \, \gamma_{\text{M}} = \text{19.821 N/mm}^2$

 $\sigma_{m,y,d} / f_{m,y,d} = 0.342$

PASS - Design bending strength exceeds design bending stress

Check beams subjected to either bending or combined bending and compression - cl.6.3.3

Effective length - Table 6.1 $L_{ef} = 0.9 \times 3000 \text{ mm} + 2 \times h = 2900 \text{ mm}$

Critical bending stress - exp.6.32 $\sigma_{\text{m,crit}} = 0.78 \times b^2 \times E_{0.05} \, / \, (h \times L_{\text{ef}}) = \text{49.759 N/mm}^2$

Relative slenderness for bending - exp.6.30 $\lambda_{\text{rel,m}} = \sqrt{(f_{\text{m.k}} / \sigma_{\text{m,crit}})} = 0.694$

Lateral buckling factor - exp.6.34 $k_{crit} = 1.000$

Beam stability check - exp.6.33 $\sigma_{\text{m,y,d}} / (k_{\text{crit}} \times f_{\text{m,y,d}}) = \textbf{0.342}$

PASS - Beam stability is acceptable

Consider Combination 2 - 1.0G + 1.0Q + 1.0RQ (Service)

Check design 1500 mm along span

Check y-y axis deflection - Section 7.2

Instantaneous deflection δ_y = **8.4** mm Quasi-permanent variable load factor $\psi_2 = \mathbf{0}$

Final deflection with creep $\delta_{\text{y,Final}} = 0.5 \times \delta_{\text{y}} \times \text{(1 + kdef)} + 0.5 \times \delta_{\text{y}} \times \text{(1 + } \psi_{\text{2}} \times \text{kdef)} = \text{11 mm}$

Allowable deflection $\delta_{\text{y,Allowable}} = L_{\text{m1_s1}} \: / \: 250 = \text{12 mm}$

 $\delta_{y,Final} / \delta_{y,Allowable} = 0.914$

PASS - Allowable deflection exceeds final deflection

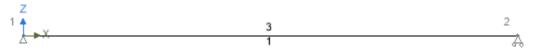
5 Union Road Chippenham SN15 1HW

Project				Job no.	
	166	3GE			
Calcs for				Start page no./Revision	
C502 ceiling joists - supporting walkway					1
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
RP	08/05/2025				

TIMBER MEMBER ANALYSIS & DESIGN (EN1995-1-1:2004)

In accordance with EN1995-1-1:2004 + A2:2014 incorporating corrigendum June 2006 and the UK national annex

Tedds calculation version 2.2.20


Beam results summary	Unit	Capacity	Maximum	Utilisation	Result
Bearing stress	N/mm ²	2.9	0.2	0.058	PASS
Bending stress	N/mm ²	19.8	9.6	0.485	PASS
Shear stress	N/mm ²	3.0	0.5	0.157	PASS
Beam stability check				0.485	PASS
Deflection	mm	16.7	15.2	0.914	PASS

ANALYSIS

Tedds calculation version 1.0.37

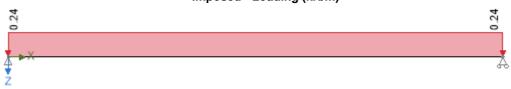
Geometry

Geometry (m) - C24 (EC5) - 50x100

Span	Length (m)	Section	Start Support	End Support
1	3	50x100	Pinned	Roller Pin X


50x100: Area 50 cm², Inertia Major 417 cm⁴, Inertia Minor 104 cm⁴, Shear area parallel to Minor 42 cm², Shear area parallel to Major = 42 cm²

C24 (EC5): Density 420 kg/m³, Youngs 11 kN/mm², Shear 0.69 kN/mm², Thermal 0 °C-1


Loading

Self weight included

Permanent - Loading (kN/m)

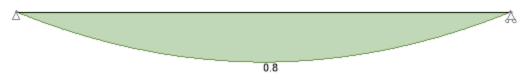
Imposed - Loading (kN/m)

Load combination factors

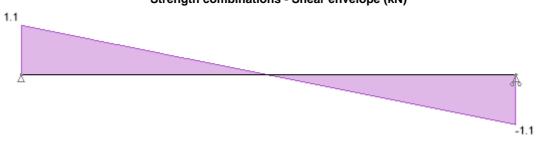
Load combination	Self Weight	Permanent	pesodul
1.35G + 1.5Q + 1.5RQ (Strength)	1.35	1.35	1.50
1.0G + 1.0Q + 1.0RQ (Service)	1.00	1.00	1.00

5 Union Road Chippenham SN15 1HW

Project				Job no.	
Chippenham Town Hall				166	3GE
Calcs for				Start page no./Revision	
	C502 ceiling joists - supporting walkway				2
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
RP	08/05/2025				


Member Loads

	Member	Load case	Load Type	Orientation	Description
	Beam	Permanent	UDL	GlobalZ	0.24 kN/m
Ī	Beam	Imposed	UDL	GlobalZ	0.24 kN/m


Results

Forces


Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

Service combinations - Deflection envelope (mm)

Beam - Span 1

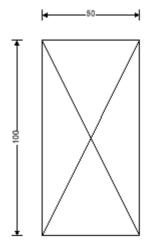
Partial factor for material properties and resistances

Partial factor for material properties - Table 2.3 $\gamma_M = 1.300$

Member details

Load duration - cl.2.3.1.2 Short-term

Service class - cl.2.3.1.3


Timber section details

Timber strength class - EN 338:2016 Table 1 C24

5 Union Road Chippenham SN15 1HW

Project				Job no.	
	166	3GE			
Calcs for			Start page no./Revision		
C50	C502 ceiling joists - supporting walkway				3
Calcs by RP	Calcs date 08/05/2025	Checked by	Checked date	Approved by	Approved date

50x100 timber section

Cross-sectional area, A, 5000 mm²
Section modulus, W₂, 83333.3 mm²
Section modulus, W₂, 41667 mm²
Second moment of area, I₂, 4166667 mm⁴
Second moment of area, I₂, 1041667 mm⁴
Radius of gyration, I₂, 28.9 mm
Radius of gyration, I₂, 14.4 mm

Timber strength class C24
Characteristic bending strength, f_{max}, 24 N/mm²
Characteristic shear strength, f_s, 4 N/mm²

Characteristic compression strength parallel to grain, $f_{co.s.}$, 21 N/mm² Characteristic compression strength perpendicular to grain, $f_{co.s.}$, 2.5 N/mm² Characteristic tension strength parallel to grain, $f_{co.s.}$, 14.5 N/mm²

Mean modulus of elasticity, $\mathbf{E}_{0,moon}$, 11000 N/mm² Fifth percentile modulus of elasticity, $\mathbf{E}_{0,moo}$, 7400 N/mm² Shear modulus of elasticity, \mathbf{G}_{moon} , 690 N/mm² Characteristic density, \mathbf{p}_{o} , 350 Kg/m²

Mean density, Present 420 kg/m²

Span details

Bearing length $L_b = 100 \text{ mm}$

Consider Combination 1 - 1.35G + 1.5Q + 1.5RQ (Strength)

Modification factors

Duration of load and moisture content - Table 3.1 $k_{mod} = 0.9$ Deformation factor - Table 3.2 $k_{def} = 0.6$

Depth factor for bending - Major axis - exp.3.1 $k_{h,m,y} = min((150 \text{ mm / h})^{0.2}, 1.3) = 1.084$

Bending stress re-distribution factor - cl.6.1.6(2) $k_m = 0.7$ Crack factor for shear resistance - cl.6.1.7(2) $k_{cr} = 0.67$ Load configuration factor - cl.6.1.5(4) $k_{c,90} = 1.5$ System strength factor - cl.6.6 $k_{sys} = 1.1$

Check design at start of span

Check compression perpendicular to the grain - cl.6.1.5

Design perpendicular compression - major axis $F_{c,y,90,d} = 1.068 \text{ kN}$

Effective contact length $L_{b,ef} = L_b + min(L_b, 30 \text{ mm}) = 130 \text{ mm}$ Design perpendicular compressive stress - exp.6.4 $\sigma_{c,y,90,d} = F_{c,y,90,d} / (b \times L_{b,ef}) = 0.164 \text{ N/mm}^2$ Design perpendicular compressive strength $f_{c,y,90,d} = k_{mod} \times k_{sys} \times f_{c,90,k} / \gamma_M = 1.904 \text{ N/mm}^2$

 $\sigma_{c,y,90,d} / (k_{c,90} \times f_{c,y,90,d}) = 0.058$

PASS - Design perpendicular compression strength exceeds design perpendicular compression stress

Check shear force - Section 6.1.7

Design shear force $F_{y,d} = 1.068 \text{ kN}$

Design shear stress - exp.6.60 $\tau_{y,d} = 1.5 \times F_{y,d} / (k_{cr} \times b \times h) = \textbf{0.478 N/mm}^2$ Design shear strength $f_{v,y,d} = k_{mod} \times k_{sys} \times f_{v,k} / \gamma_{M} = \textbf{3.046 N/mm}^2$

 $\tau_{y,d} / f_{v,y,d} = 0.157$

PASS - Design shear strength exceeds design shear stress

Check design 1500 mm along span

Check bending moment - Section 6.1.6

Design bending moment $M_{y,d} = 0.801 \text{ kNm}$

Design bending stress $\sigma_{m,y,d} = M_{y,d} / W_y = 9.609 \text{ N/mm}^2$

5 Union Road Chippenham SN15 1HW

Project				Job no.	
	166	3GE			
Calcs for				Start page no./Revision	
C502 ceiling joists - supporting walkway				4	
Calcs by RP	Calcs date 08/05/2025	Checked by	Checked date	Approved by	Approved date

Design bending strength $f_{m,y,d} = k_{h,m,y} \times k_{mod} \times k_{sys} \times f_{m,k} / \gamma_M = 19.821 \text{ N/mm}^2$

 $\sigma_{m,y,d} / f_{m,y,d} = 0.485$

PASS - Design bending strength exceeds design bending stress

Check beams subjected to either bending or combined bending and compression - cl.6.3.3

Effective length - Table 6.1 Lef = $0.9 \times 3000 \text{ mm} + 2 \times h = 2900 \text{ mm}$

Critical bending stress - exp.6.32 $\sigma_{\text{m,crit}} = 0.78 \times b^2 \times E_{0.05} / (h \times L_{\text{ef}}) = 49.759 \text{ N/mm}^2$

Relative slenderness for bending - exp.6.30 $\lambda_{\text{rel,m}} = \sqrt{(f_{\text{m.k}} / \sigma_{\text{m,crit}})} = 0.694$

Lateral buckling factor - exp.6.34 $k_{crit} = 1.000$

Beam stability check - exp.6.33 $\sigma_{m,y,d}$ / (k_{crit} × f_{m,y,d}) = **0.485**

PASS - Beam stability is acceptable

Consider Combination 2 - 1.0G + 1.0Q + 1.0RQ (Service)

Check design 1500 mm along span

Check y-y axis deflection - Section 7.2

Instantaneous deflection $\delta_y = 11.7 \text{ mm}$

Quasi-permanent variable load factor $\psi_2 = \mathbf{0}$

Final deflection with creep $\delta_{y,\text{Final}} = 0.5 \times \delta_y \times (1 + k_{\text{def}}) + 0.5 \times \delta_y \times (1 + \psi_2 \times k_{\text{def}}) = \textbf{15.2} \text{ mm}$

Allowable deflection $\delta_{y,Allowable} = L_{m1_s1} / 180 = 16.7 \text{ mm}$

 $\delta_{y,Final} / \delta_{y,Allowable} =$ **0.914**

PASS - Allowable deflection exceeds final deflection

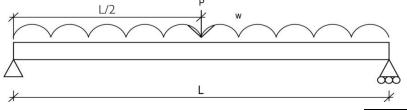
Job Title	Job No.	Page No.	Rev.
Chippenham Town Hall	1663GE		C1
Calculations/Sketch Title	Date	Author	Checked
C503 Flat roof joists	12/06/25	RP	-

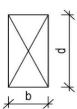
CALCULATION SHEET

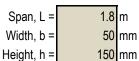
Simply Supported Timber Beam:

RESULT:

PASS


17%


BS EN 1995-1-1


Member Description:

Flat roof joists

Beam Properties:

Section modulus, $W_y = 1.88E + 05 \text{ mm}^3$ Second Moment of Area, I_{yy} = 1.41E+07 N/mm⁴

Material: Softwood Grade: C16 Service-Class: Load sharing? Yes

8000 N/mm² Modulus of Elasticity, $E_{0,mean}$ = Charac. bending strength, $f_{m,y,k}$ = 16 N/mm² Charac. shear strength, $f_{v,k}$ = **3.2** N/mm2 Charac. perp. comp. strength, $f_{c,90,k}$ = 2.2 N/mm2

BS EN 338

Supports:

Bearing width, b ₂ =	50	mm
Bearing length, I =	100	mm

Applied Loading:

Load Duration Short-term

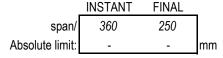
0.6

Major Avis I gading

Major Axis Loading:			Width spanning to	0.40	
	UDL Loads:		Point Loads:		
	kN/m²	w, kN/m	P, <i>kN</i>	ψ_0	ψ_2
Dead load, g _k	0.9	0.36	0	-	-
Primary live load, $q_{k,1}$	0.75	0.3	0	-	0
Secondary live load, $q_{k,2}$	0	0	0	0.5	0

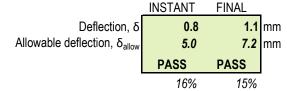
Load Case:		UDL Loads:		Point Loads:
			w, kN/m	P, <i>kN</i>
SLS	Inst		0.66	0.00
	Creep		0.22	0.00
	Final		0.88	0.00
ULS			0.94	0.00

§2.2.3 TABLE 3.2 §7


Job Title	Job No.	Page No.	Rev.
Chippenham Town Hall	1663GE		C1
Calculations/Sketch Title	Date	Author	Checked
C503 Flat roof joists	12/06/25	RP	-

CALCULATION SHEET

Serviceability Limit State:


Deflection:

Deflection Limits:

TABLE NA.5

Major Axis:

Vibration:

Frequency:

Check vibration?

No

Floors must have a frequency greater than 8 Hz. Otherwise special investigation must be made.

 $f_1 = \frac{18}{\sqrt{w_{inst}}}$

ISructE Manual

 w_{inst} is the instantaneous bending deflection of the floor under dead weight only. \mathbf{w}_{inst} assumes the floor is spanning in one direction simply supported.

$$w_{inst} = \frac{5w_{gk}L^4}{384EI} \qquad \qquad \text{Instantaneous dead load deflection, } \\ w_{inst} = \underbrace{\begin{array}{c} 0.44 \text{ mm} \\ \text{Allowable frequency} = \\ \text{Frequency, f}_1 = \\ \end{array}}_{\text{PASS}} \text{Hz}$$

Static Deflection under Point Load:

$$\begin{array}{c} \text{Amplification factor, k}_{\text{amp}} = & 1.05 \\ \text{Proportion of load acting on single joist, k}_{\text{dist}} = & 0.30 \\ \text{Deflection under 1kN midspan point load, w}_{\text{inst,Q}} = & \\ & \text{Allowable deflection, a} = & \\ & \text{PASS} \end{array}$$

Unit Impulse Velocity Response:

For typical timber floors, this check is not required.

IStructE Manual

Job Title	Job No.	Page No.	Rev.
Chippenham Town Hall	1663GE		C1
Calculations/Sketch Title	Date	Author	Checked
C503 Flat roof joists	12/06/25	RP	-

CALCULATION SHEET

<u>Ult</u>

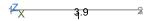
Iltimate Limit State:			
ls t	peam subject to lateral torsional buckling?	No	
Bending:			§6.1.6
$M_{y,Ed} = w_{ULS} \cdot L^2/8$	Design moment, $M_{y,Ed} =$	0.38 kNm	
$\sigma_{m,y,d} = M_{y,Ed}/W_y$	Partial safety factor, γ_M =	1.3	TABLE 2.3
	$k_{mod} =$	0.9	TABLE 3.1
	$k_{sys} =$	1.1	
$f_{m,v,d} = k_{crit} \cdot k_{mod} \cdot k_h \cdot k_{sys} \cdot f_{m,v,d}$	$k_h =$	1.00	§3.3
Jm,y,a — Nerit Rmod Rn Rsys Jm,y,	k k _{crit} =	1.00	
	Design bending stress, $\sigma_{m,y,d}$ =	2.02 N/mm ²	
	Design bending strength, $f_{m,y,d}$ =	12.18 N/mm ²	
		PASS	
	•	17%	
Shear:			§6.1.7
$V_{Ed} = w_{ULS} \cdot L/2$	Shear force, V_{Ed} =	0.84 kN	
$\tau_{v,d} = 3/2 \left(V_{Ed}/bh_v \right)$	$k_{cr} =$	0.67	TABLE NA.4
$f_{v,d} = k_{mod} \cdot k_{cr} \cdot f_{v,k} / \gamma_M$	Design shear stress T =	0.47 N/22220	
.,,	Design shear stress, $\tau_{v,d}$ =	0.17 N/mm2	
	Design shear strength, $f_{v,d}$ =	1.48 N/mm2	
	l	PASS	
Descine		11%	SG 1 E
Bearing:	Design Compressive Load, F _{c,d} =	0.84 kN	§6.1.5
$\sigma_{c,90,d} = F_{c,90,d}/b_2 \cdot l_{ef}$	Boolgii Comprocento Loca, i c,a	0.04 KIN	
Simply supported beam with UDL:	k _{c,90} =	1.5	PD 6693-1 §8
	Effective bearing length, I _{ef} =	100 mm	
$f_{c,90,d} = k_{mod} \cdot k_{c,90} \cdot f_{c,90,k} / \gamma_M$			
	Design compressive stress, $\sigma_{c,90,d}$ =	0.17 N/mm2	
	Design compressive strength, $f_{c,90,d}$ =	2.28 N/mm2	
		PASS	
		7%	

X	Project				Job Ref.	
GIRAFFE	Chippenham Town Hall				1663GE	
Ciroffo Engineering	Section				Sheet no./rev.	
Giraffe Engineering 5 Union Road	C504 beam B2				1	
Chippenham	Calc. by	Date	Chk'd by	Date	App'd by	Date
Wiltshire SN15 1HW	RP	12/06/2025				

STEEL MEMBER ANALYSIS & DESIGN (EN1993)

STEEL MEMBER ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex


Tedds calculation version 4.4.06

ANALYSIS

Tedds calculation version 1.0.35

Geometry

Geometry (m) - Steel (EC3) - UKB 203x102x23

Span	Length (m)	Section	Start Support	End Support			
1	3.9	UKB 203x102x23	Pinned	Roller Pin X			
IJKR 203v102v23: Area 20 cm ² Inertia Major 2105 cm ⁴ Inertia Minor 164 cm ⁴ Shear area parallel to Minor							

|UKB 203x102x23: Area 29 cm², Inertia Major 2105 cm³, Inertia Minor 164 cm³, Shear area parallel to Minor |11 cm², Shear area parallel to Major = 17 cm²

Steel (EC3): Density 7850 kg/m³, Youngs 210 kN/mm², Shear 80.8 kN/mm², Thermal 0.000012 °C⁻¹

Loading

Self weight included

Permanent - Loading (kN/m)

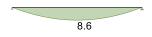
Imposed - Loading (kN/m)

Load combination factors

Load combination 1.35G + 1.5Q + 1.5RQ (Strength)		Permanent	pəsoduı
1.35G + 1.5Q + 1.5RQ (Strength)	1.35	1.35	1.50
1.0G + 1.0Q + 1.0RQ (Service)	1.00	1.00	1.00

Member Loads

Member	Load case	Load Type	Orientation	Description
Beam	Permanent	UDL	GlobalZ	1.62 kN/m
Beam	Imposed	UDL	GlobalZ	1.35 kN/m


5 Union Road Chippenham Wiltshire SN15 1HW

Project				Job Ref.	
Chippenham Town Hall				166	3GE
Section			Sheet no./rev.		
C504 beam B2				2	
Calc. by	Date	Chk'd by	Date	App'd by	Date
RP	12/06/2025				

Results

Forces

Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

Service combinations - Deflection envelope (mm)

Partial factors - Section 6.1

Resistance of cross-sections $\gamma_{M0} = 1$ Resistance of members to instability $\gamma_{M1} = 1$ Resistance of tensile members to fracture $\gamma_{M2} = 1.1$

Beam design

Section details

Section type UKB 203x102x23 (Tata Steel Advance)

Steel grade - EN 10025-2:2004 S355

Nominal thickness of element $t_{nom} = max(t_f, t_w) = 9.3 \text{ mm}$

Nominal yield strength $f_y = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity $E = 210000 \text{ N/mm}^2$

5 Union Road Chippenham Wiltshire SN15 1HW

Project	Job Ref.				
Chippenham Town Hall				166	3GE
Section				Sheet no./rev.	
C504 beam B2				3	
Calc. by	Date	Chk'd by	Date	App'd by	Date
RP	12/06/2025				

Lateral restraint

Both flanges have lateral restraint at supports only

Classification of cross sections - Section 5.5

 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = \mathbf{0.81}$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 169.4 mm

c / t_w = 31.4 = 38.6 × ϵ <= 72 × ϵ Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r) / 2 = 40.6 \text{ mm}$

c / t_f = 4.4 = 5.4 × ϵ <= 9 × ϵ Class 1

Section is class 1

Check design at start of span

Check shear - Section 6.2.6

Height of web $h_{w} = h - 2 \times t_{f} = 184.6 \text{ mm} \qquad \qquad \eta = 1.000$

 $h_w / t_w = 34.2 = 42 \times \epsilon / \eta < 72 \times \epsilon / \eta$

Shear buckling resistance can be ignored

Design shear force $V_{y,Ed} = 8.8 \text{ kN}$

Shear area - cl 6.2.6(3) $A_{v} = max(A - 2 \times b \times t_{f} + (t_{w} + 2 \times r) \times t_{f}, \ \eta \times h_{w} \times t_{w}) = 1238 \ mm^{2}$

Design shear resistance - cl 6.2.6(2) $V_{c,y,Rd} = V_{pl,y,Rd} = A_v \times (f_y / \sqrt{3}) / \gamma_{M0} = 253.7 \text{ kN}$

 $V_{y,Ed} / V_{c,y,Rd} = 0.035$

PASS - Design shear resistance exceeds design shear force

Check design 1950 mm along span

Check bending moment - Section 6.2.5

Design bending moment $M_{y,Ed} = 8.6 \text{ kNm}$

Design bending resistance moment - eq 6.13 $M_{c,y,Rd} = M_{pl,y} \times f_y / \gamma_{M0} = 83.1 \text{ kNm}$

 $M_{y,Ed} / M_{c,y,Rd} = 0.103$

PASS - Design bending resistance moment exceeds design bending moment

Slenderness ratio for lateral torsional buckling

Correction factor - Table 6.6 $k_c = 0.94$

 $C_1 = 1 / k_c^2 = 1.132$

No.	Project				Job Ref.	
GIRAFFE	Chippenham Town Hall				1663GE	
Ciroffo Engineering	Section				Sheet no./rev.	
Giraffe Engineering 5 Union Road		C504 I	beam B2			4
Chippenham	Calc. by	Date	Chk'd by	Date	App'd by	Date
Wiltshire SN15 1HW	RP	12/06/2025				

Poissons ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained effective length $L = 1.0 \times L_{\text{m1_s1_seg1_T}} = 3900 \text{ mm}$

Elastic critical buckling moment $M_{cr} = C_1 \times \pi^2 \times E \times I_z / L^2 \times \sqrt{(I_W / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z))} = 47.1$

kNm

Slenderness ratio for lateral torsional buckling $\overline{\lambda}_{LT} = \sqrt{(W_{pl,y} \times f_y / M_{cr})} = 1.328$

Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.4$

 $\bar{\lambda}_{LT} > \bar{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Check buckling resistance - Section 6.3.2.1

Buckling curve - Table 6.5 b

 $\begin{array}{ll} \mbox{Imperfection factor - Table 6.3} & \alpha_{\mbox{\scriptsize LT}} = \mbox{\bf 0.34} \\ \mbox{Correction factor for rolled sections} & \beta = \mbox{\bf 0.75} \\ \end{array}$

Modified LTB reduction factor - eq 6.58 $\chi_{LT,mod} = min(\chi_{LT} / f, 1, 1 / \overline{\lambda}_{LT}^2) = \textbf{0.516}$ Design buckling resistance moment - eq 6.55 $M_{b,y,Rd} = \chi_{LT,mod} \times W_{pl,y} \times f_y / \gamma_{M1} = \textbf{42.9 kNm}$

 $M_{y,Ed} / M_{b,y,Rd} = 0.2$

PASS - Design buckling resistance moment exceeds design bending moment

Consider Combination 2 - 1.0G + 1.0Q + 1.0RQ (Service)

Check design 1950 mm along span

Check y-y axis deflection - Section 7.2.1

Maximum deflection $\delta_y = 2.2 \text{ mm}$

Allowable deflection $\delta_{y,Allowable} = L_{m1_s1} / 360 = 10.8 \text{ mm}$

 δ_y / $\delta_{y,Allowable}$ = **0.207**

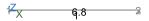
PASS - Allowable deflection exceeds design deflection

X	Project				Job Ref.	
GIRAFFE	Chippenham Town Hall				1663GE	
Ciroffo Engineering	Section			Sheet no./rev.		
Giraffe Engineering 5 Union Road	C505 steel beam B1				1	
Chippenham	Calc. by	Date	Chk'd by	Date	App'd by	Date
Wiltshire SN15 1HW	RP	12/06/2025				

STEEL MEMBER ANALYSIS & DESIGN (EN1993)

STEEL MEMBER ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex


Tedds calculation version 4.4.06

ANALYSIS

Tedds calculation version 1.0.35

Geometry

Geometry (m) - Steel (EC3) - UKB 356x127x33

Span	Length (m) Section		Start Support	End Support			
1	6.8	UKB 356x127x33	Pinned	Roller Pin X			
UKB 356x127x33: Area 42 cm ² , Inertia Major 8249 cm ⁴ , Inertia Minor 280 cm ⁴ , Shear area parallel to Minor							

21 cm², Shear area parallel to Major = 19 cm²

Steel (EC3): Density 7850 kg/m³, Youngs 210 kN/mm², Shear 80.8 kN/mm², Thermal 0.000012 °C⁻¹

Loading

Self weight included

Permanent - Loading (kN/m)

Imposed - Loading (kN/m)

Load combination factors

Load combination		Permanent	pesodwi
1.35G + 1.5Q + 1.5RQ (Strength)	1.35	1.35	1.50
1.0G + 1.0Q + 1.0RQ (Service)	1.00	1.00	1.00

Member Loads

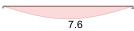
Member	Load case	Load Type	Orientation	Description
Beam	Permanent	UDL	GlobalZ	2.3 kN/m
Beam	Imposed	UDL	GlobalZ	2 kN/m

5 Union Road Chippenham Wiltshire SN15 1HW

Project				Job Ref.	
	1663GE				
Section		Sheet no./rev.			
		2			
Calc. by	Date	Chk'd by	Date	App'd by	Date
RP	12/06/2025				

Results

Forces


Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

Service combinations - Deflection envelope (mm)

Partial factors - Section 6.1

Resistance of cross-sections $\gamma_{M0} = 1$ Resistance of members to instability $\gamma_{M1} = 1$ Resistance of tensile members to fracture $\gamma_{M2} = 1.1$

Beam design

Section details

Section type UKB 356x127x33 (Tata Steel Advance)

Steel grade - EN 10025-2:2004 S355

Nominal thickness of element $t_{nom} = max(t_f, t_w) = 8.5 \text{ mm}$

Nominal yield strength $f_y = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity $E = 210000 \text{ N/mm}^2$

5 Union Road Chippenham Wiltshire SN15 1HW

Project				Job Ref.	
	1663GE				
Section		Sheet no./rev.			
	C505 stee		3		
Calc. by	Date	Chk'd by	Date	App'd by	Date
RP	12/06/2025				

Lateral restraint

Both flanges have lateral restraint at supports only

Classification of cross sections - Section 5.5

 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.81$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 311.6 mm

c / t_w = 51.9 = 63.8 \times ϵ <= 72 \times ϵ Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r) / 2 = 49.5 \text{ mm}$

c / t_f = 5.8 = 7.2 × ϵ <= 9 × ϵ Class 1

Section is class 1

Check design at start of span

Check shear - Section 6.2.6

Height of web $h_{w} = h - 2 \times t_{f} = 332 \text{ mm} \qquad \qquad \eta = 1.000$

 $h_w / t_w = 55.3 = 68 \times \epsilon / \eta < 72 \times \epsilon / \eta$

Shear buckling resistance can be ignored

Design shear force $V_{y,Ed} = 22.2 \text{ kN}$

Shear area - cl 6.2.6(3) $A_{v} = max(A - 2 \times b \times t_{f} + (t_{w} + 2 \times r) \times t_{f}, \ \eta \times h_{w} \times t_{w}) = 2306 \ mm^{2}$

Design shear resistance - cl 6.2.6(2) $V_{c,y,Rd} = V_{pl,y,Rd} = A_v \times (f_y / \sqrt{3}) / \gamma_{M0} = 472.6 \text{ kN}$

 $V_{y,Ed} / V_{c,y,Rd} = 0.047$

PASS - Design shear resistance exceeds design shear force

Check design 3400 mm along span

Check bending moment - Section 6.2.5

Design bending moment $M_{y,Ed} = 37.8 \text{ kNm}$

Design bending resistance moment - eq 6.13 $M_{c,y,Rd} = M_{pl,y,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 192.7 \text{ kNm}$

 $M_{y,Ed} / M_{c,y,Rd} = 0.196$

PASS - Design bending resistance moment exceeds design bending moment

Slenderness ratio for lateral torsional buckling

Correction factor - Table 6.6 $k_c = 0.94$

 $C_1 = 1 / k_c^2 = 1.132$

	Project				Job Ref.	
GIRAFFE	Chippenham Town Hall				1663GE	
Ciroffo Engineering	Section				Sheet no./rev.	
Giraffe Engineering 5 Union Road		C505 ste	el beam B1			4
Chippenham	Calc. by	Date	Chk'd by	Date	App'd by	Date
Wiltshire SN15 1HW	RP	12/06/2025				

Poissons ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained effective length $L = 1.0 \times L_{\text{m1_s1_seg1_T}} = 6800 \text{ mm}$

Elastic critical buckling moment $M_{cr} = C_1 \times \pi^2 \times E \times I_z / L^2 \times \sqrt{(I_W / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z))} = 41.6$

kNm

Slenderness ratio for lateral torsional buckling $\overline{\lambda}_{LT} = \sqrt{(W_{pl.y} \times f_y / M_{cr})} = 2.153$

Limiting slenderness ratio $\overline{\lambda}_{LT,0} = 0.4$

 $\bar{\lambda}_{LT} > \bar{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Check buckling resistance - Section 6.3.2.1

Buckling curve - Table 6.5

 $\begin{array}{ll} \mbox{Imperfection factor - Table 6.3} & \mbox{α_{LT} = 0.49} \\ \mbox{Correction factor for rolled sections} & \mbox{β = 0.75} \end{array}$

Modified LTB reduction factor - eq 6.58 $\chi_{\text{LT,mod}} = \min(\chi_{\text{LT}} / f, 1, 1 / \overline{\lambda}_{\text{LT}}^2) = \textbf{0.216}$ Design buckling resistance moment - eq 6.55 $M_{\text{b,y,Rd}} = \chi_{\text{LT,mod}} \times W_{\text{pl,y}} \times f_{\text{y}} / \gamma_{\text{M1}} = \textbf{41.6 kNm}$

 $M_{y,Ed} / M_{b,y,Rd} = 0.91$

PASS - Design buckling resistance moment exceeds design bending moment

Consider Combination 2 - 1.0G + 1.0Q + 1.0RQ (Service)

Check design 3400 mm along span

Check y-y axis deflection - Section 7.2.1

Maximum deflection $\delta_y = 7.6 \text{ mm}$

Allowable deflection $\delta_{y,Allowable} = L_{m1_s1} / 360 = 18.9 \text{ mm}$

 δ_y / $\delta_{y,Allowable}$ = **0.402**

PASS - Allowable deflection exceeds design deflection