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Maritime Cliff and Slope 
Yorkshire and Cornwall trial to map maritime cliff and slope habitats 

and characteristics and provide a cliff survey protocol. 

 

1 Background  
Mapping Maritime Cliff and Slope (MCS) always presents a challenge both in terms of 

establishing the strong baseline (in terms of classification, boundary positions, function and 

habitat extents and habitat condition) and in monitoring change in relevant physical 

parameters and vegetation structure and composition.  This is noted by the Coastal Margins 

project (Jones and others 2011) who comment on the lack of a comprehensive dataset for 

the MCS priority habitat inventory. Although those comments were related to the national 

ecosystem assessment and made fourteen years ago the general position is probably still 

true. Furthermore, there is a challenge in generating repeatable habitat mapping (in terms of 

accuracy (classificatory and locationally disparity) between surveyors / systems and over 

time that is capable of reliably detecting change (Hearn et. Al. 2011). 

Although a collation of existing MCS surveys was undertaken in 2007 (Hill et al 2001, Hill et 

al 2006), this has not been maintained or incorporated in the PHI datasets despite several 

other cliff habitats sections having been surveyed in the intervening period. A further 

collation of the soft cliff surveys from 2001 – 2021 (Haycock and Jay Associates  2021) was 

conducted from sites from across England, but these different records are not consolidated.   

There are also a series of further challenges related to the repeatability of the survey 

conducted using NVC (Hearne et al 2011), the high prevalence of habitat mosaics within the 

disturbed cliff environment and also the lack of NVC classes to describe some of the more 

complex cliff plant communities where a lack of NVC samples has meant that there are no 

NVC community types described and where various ‘derived’ classes have been used. This is 

particularly compounded by the underrepresentation of soft cliff assemblages by the NVC, 

with spatially limited data being used in their construction.  

Furthermore, the extents of MCS surveys that have been undertaken are often inclusive of 

habitats that are not of PHI quality or community types, merely they are recorded within 

the extent of the mapping area of interest (i.e. within the 3 maritime cliff zones and based 

on maritime influence (Ratcliffe (1977) Maritime, Sub-maritime and Para-maritime). This is 

especially the case to cliff top habitats and cliff top grasslands where the transitions may be 

uncertain. This is the zone defined as ‘cliff-top’ which was determined by the Ratcliffe (1977) 

review should extend landward to at least the limit of maritime influence (i.e. limit of salt 

spray deposition), (Rees et al 2019).  These three Ratcliffe’s zones “Sub-maritime: (less 

direct effect of sea with soils still more saline than those inland) and Para-maritime: zone (in 

which special climatic conditions of sea coast are influential but soils not saline and 

halophytes not present)”.  Whilst the inclusions of these habitats may be for good reason, 

especially in terms of where coastal change may affect areas behind current cliff systems and 

transitions between vegetation types, they may not currently represent qualifying features of 

MCS as a semi-natural habitat of PHI status. This may not be an issue where there are other 
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PHI habitats and surveys that can recategorize these areas, but run the risk of over-

estimating MCS where there are non-PHI or no effective habitat data.  Therefore, being 

inclusive of adjacent areas in the habitat mapping becomes useful. 

These survey challenges were reviewed within the earlier Maritime Cliff and Slope inventory 

undertaken by GeoData Institute, (ENR 426 2002) and the subsequent Inventory (GeoData 

2007), but the source data survey method(s) for assessing extent and condition of maritime 

cliff habitat used predominantly ground-based surveys with aerial imagery, remote binocular 

based assessment of inaccessible sites and a protocol for integrating the data into the OS 

MasterMap parcel structure derived and PHI inventories. Since that report and inventory 

data (now 15 years old, and longer if one considers the dates of the secondary surveys 

incorporated into the inventory) the capability of Earth Observation (EO) sensors / 

Uncrewed Aerial Vehicles (UAV) sensors, remote airborne and UAV-based Light Detection 

and Ranging (LiDAR) has increased dramatically the potential to collect data from hard to 

survey locations, with greater spectral, spatial, and temporal resolution, and with the 

availability of related terrain data (LiDAR and Structure from Motion (SfM) processing). 

Furthermore, the advances in image processing and machine learning based capabilities to 

make best use of these data volumes has enhanced the ability to discriminate and map 

features of interest. A comparison of different survey methods and their spatial extents and 

resolutions, as well as barriers to implementation, can be seen in Figure 2 of Tomsett and 

Leyland (2019).   

Cliff domains are often inaccessible, unstable and difficult to observe from land, making 

pervasive ground-based survey of the resource impractical. Their dynamic nature, both in 

relation to sea-level and wave-driven erosion, and cliff instability and seasonal to annual 

changes in ecology, means that there is a need for regular monitoring of cliff morphology 

and land cover (in relation to bare earth and flora) (Leyland and Darby 2008 and 2009). 

Whilst UAVs and other remote sensing techniques offer a potential solution in relation to 

the accessibility of these sites, other difficulties present themselves. For example, in relation 

to satellite and airborne imagery, the vertical nature of cliff features often mean that sites 

are not fully measured. Satellite imagery itself has the ability to identify changes at 

temporally relevant resolution, i.e. across seasonal and annual timescales. However, these 

are fixed intervals that cannot be modified and frequently suffer from cloud cover at both 

high and low levels. Typically, satellite imagery will struggle in coastal regions, not only due 

to the vertical nature of cliffs and slopes, but because of the small spatial extent they cover 

between sea and inland often meaning satellite imagery pixel sizes are not sufficient to 

capture the required detail. Newer constellations such as Planet and Airbus imagery allow 

for much higher resolution imagery, however there is a financial cost involved for acquiring 

such images.  

These environments are also challenging for traditional UAV surveys, which rely on the 

operator being able to place and accurately survey (e.g., using GPS) Ground Control Points 

(GCPs) which are essential for accurate reconstruction of topography using SfM (Tonkin 

and Midgley, 2016). Furthermore, SfM techniques have been shown to be poor for 

accurately characterising vegetation structure (Cook, 2017; Dietrich, 2016). The fact that 

some cliff units will be heavily vegetated means that SfM alone will not be able to resolve 

vegetation or the underlying bare earth. This suggests that the use of standard UAV 
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platforms may not be suitable for routine monitoring of cliff topography, leaving them only 

able to take images that may be useful for identification of species and/or habitat manually 

via an ecologist (e.g., Strumia et al., 2020). Nevertheless, other UAV mounted sensors may 

offer further survey potential.  

2 Study Objectives 
The objectives of this study were: 

• To assess ability to use EO / remote data to assess MCS condition. 

• Evaluate a protocol for surveys of cliffs (process, costs and procedures) 

• Secondarily, to generate products that can feed into the Priority Habitat Inventory 
of MCS  

These objectives were seen as complimentary to other work being undertaken to support 

the assessment of MCS habitats, and notably the move within Natural England to a Whole 

Feature Approach in determining favourable conditions (as a separate NE activity led by 

Louise Denning). The Whole Feature Approach has removed the unit divisions for condition 

monitoring in favour of reporting on special features across the whole SSSI. The study 

objectives were focused on using the historic, secondary, and current data to identify the 

procedures and practices to support priority habitat mapping and condition assessment on 

MCS.  

In a related project, GeoData Institute (Hill, Leyland, Tomsett, 2025) is undertaking a 

literature review, evaluation and reporting to provide with recommendations as to how to 

take forward the monitoring of Maritime Cliff and Slope within the context of both the 

CSM; capitalising on the availability of new survey techniques using Earth Observation data / 

UAV, new processing techniques, environments, and technologies.   

Together these projects should inform the development of the standard survey method(s) 

for assessing the condition and extent of maritime cliff habitat in England, rather than just 

the survey on its own.  The development of any approaches also needs to be informed by 

the processing to develop Priority Habitat (PHI) data and update, which are also being 

undertaken by GeoData, so that emerging MCS approaches, and data outputs are 

compatible with the new PHI, update procedures and the geospatial data framework to be 

used for PHI datasets.  

Furthermore, the field elements are split into survey in Cornwall and North Yorkshire; 

ostensibly on hard (Cornwall) and soft cliff (North Yorkshire). Both are needed if a single 

standard methodology is to be produced from this work, as the requirements for 

monitoring (via CSM attributes) differ. This will ensure consistency in approaches and to 

ground the survey in the context of the literature review and assessment.  

The evaluation of the suitability of EO / UAV and remote sensed data relies on the ability to 

discriminate the relevant attributes of the CSM themes and attributes for both soft and hard 

cliffs (set out in Table 1).  

Table 1 CSM Monitoring attributes requirements as the targets for the survey. 
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THEME Attributes of cliff class   

 SOFT HARD 

Habitat Habitat extent Habitat Extent 

Geomorphology Geomorphological naturalness - 

Vegetation 

Structure 

Zones and transitions Vegetation, structure, zones and 

transitions 

Pioneer communities Vegetation: pioneer communities 

- Maritime grassland 

Vegetation 

composition 

- Rock crevice and cliff ledge 

- Maritime therophyte vegetation 

- Species of grazed maritime grassland 

- Species of ungrazed maritime grassland 

- Negative indicator species 

- Frequency of bracken and scrub 

Indicators of local 

distinctiveness   

Notable species Notable species 

Maritime slope flush 

communities 

- 

Extent and quality of cliff top 

grasslands 

Extent and quality of cliff top grasslands 

Coastal scrub and woodland Coastal scrub and woodland 

Coastal Heath Coastal Heath 

3 Methodology 
To test the methodologies for survey of cliff and slope environments in this project we used 

three important recent advances in UAV platform and sensor technology to overcome the 

challenges:   

i) use of the latest generation ‘direct georeferencing’ platforms, which make use of 

inertial sensors and differential GPS to resolve platform location down to centimetre 

accuracy, removing the need for a network of Ground Control Points (GCPs). 

 ii) use of a UAV Laser Scanner which is capable both of characterising vegetation 

structure and of penetrating through vegetation to measure ground points (Figure 

15).  

iii) use of multispectral imagery for deriving spectral indices (e.g., red-edge 

Normalised Difference Vegetation Indices (NDVI)) to aid detection and identification 

of vegetation 

All drone surveys undertaken complied fully with Civil Aviation Authority (CAA) regulations 

see section 3.2 and Appendix A (typical risk assessment).   

3.1 Survey Locations and base data 

Site selection was undertaken in consultation with the project officer and reserve managers 

(and local teams, to secure permissions and to assess any constraints (e.g. overwintering 

birds etc). Criteria for site selection included availability of existing and recent geospatial 

habitat mapping, availability of images (aerial and airborne LiDAR data) and accessibility / 

permissions to survey the sites and the distinctive geology between locations. Additional 

considerations included the protected status. 
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Two sites of approximately 400m each were chosen in Yorkshire and Cornwall and 

extending up to c 50m inland. The coverage was to be sufficient to encompass a range of 

MCS habitats and cliff top areas to provide the basis for extrapolation of the survey 

requirements to English cliffs. 

3.1.1 Yorkshire section: Reighton / Speeton Sands  

The sites selected include sections of eroding soft cliff that is a part-vegetated landslide 

complex developed in glacial tills. These cliffs are actively eroding through a series of 

relatively large rotational failures.  

Natural England commissioned a vegetation survey (traditional visual condition assessment 

using aerial photography, remote viewing, and ground truthing) over the summer 2021 

(Haycock and Jay Associates) as a repeat of previous survey carried out in 2012/13 (by the 

same surveyor) undertaken as part of SSSI extension assessment. Data were collected to 

NVC classes (Rodwell ed. 1991a,1991b, 1992) (where possible) and used a mixture of on-

site and observation where access was impossible. These surveys do not mention the use of 

existing aerial photographic coverage within the survey area, but this is assumed although it 

is uncertain whether the aerial coverage used is contemporary with the survey – especially 

as some areas of cliff top vegetation transitions are not represented. Examination of the GIS 

data also showed a few misidentifications or misattributions of the habitat classes within the 

2021 Reighton / Speeton survey.   

There are earlier surveys of cliff vegetation and of coastal change prediction for the 

Flamborough to Scarborough cliffs from 2002 (Milliken and Pendry 2002) and surveys 

undertaken by Radley and Rogers 19951. 
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Figure 21 Presentation of the Haycock and Jay 2021 NVC data over the coastal monitoring orthorectified aerial 

photographic data from the National Programme of Regional Coastal Monitoring (coastamonitoring.org). These maps 

were used in the field to validate the coverage of the NVC geospatial datasets. 

The vegetation of the Speeton Sands / Reighton Cliffs is characterised as a mosaic, and 

several of the mapped habitats are considered not to coincide with established NVC 

communities due to the poor representation of such sites within the original NVC sample 

datasets. Thus, areas are frequently mapped as community mosaics which “is compounded 

by the process of two-dimensional mapping of a three-dimensional surface upon which two 

or three vegetation types often intergrade (i.e. down the cliff) within a relatively small area” 

(Haycock and Jay Associates 2013). This is especially true in the early successional habitats 

of the Reighton / Speeton coast has been mapped as AG**: Agrostis successional vegetation 

– as not occurring in the NVC community classes. There are other communities that have 

been mapped differently in the different surveyed dates, yet probably do not represent a 

change in habitat but rather a change in interpretation of the habitat (e.g. (Radley (1995) 

classified an area as CG6a Avenula pubescens grassland ￼￼Milliken and Pendry (2002). 

classified this as PB** Calcicolous grassland on slopes below the pillbox near Old Beck, 

which they considered poor fit to the established NVC classes.  

The cliffs are a complex land slip (Lee 2014) and at Reighton the estimates of cliff top 

retreat over the 50 yr extrapolation are: Lower Bound Estimate: 10m Upper Bound 

Estimate: 20m, NCERM Estimate: 10-20m. Recent reporting (Lee 2025) indicates 

Scarborough Borough Council monitoring rates for 2008-2020 for Speeton was 0.01-

0.11m/yr between 2008-2020. The Filey Strategy study (Halcrow 2002) undertook surveys 

of the long-term recession rates using historic map analysis and Profile 118, Reighton Cliffs 
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(1893-2000) gave cliff top recession rates of 0.17m/year. The North East Coastal Group cliff 

recession measurements: Scarborough to Filey (from Halcrow, 2013) undertook direct 

measurements of cliff top against a coastal baseline suggesting recession at Reighton (2008-

2013) of 0.02 – 0.04 m/yr. These rates are for Reighton rather than directly at the Speeton 

Cliff surveyed so may differ but are on predominantly the same geology and alignments.  

The cliff slope is characterised by a series of rotational slips and recent failures, which are 

represented in the habitat mapping as bare ground or early successional vegetation 

communities. 

The Haycock and Jay 2021 data includes a series of mosaic habitats. 

Within the context of 

mapping a site the first 

step may be the 

collation of the existing 

base data, existing 

classification, and 

habitat mapping. Table 2 highlights the datasets and mapping available for the Speeton site.  

Table 2 Available imagery / data: Speeton, Yorkshire 

Dataset Date/s 

Orthorectified aerial 2021, 2019, 2017, 2010, 2008 

Lidar 2019, 2021, 2016, 2014, 2012, 2009 

False-colour infrared imagery 2017, 2019, 2021 

Habitat mapping (Regional Coastal Monitoring 

Programme Habitat surveys - RCMP) 

2017-19 

 

The RCMP habitat mapping data distinguishes maritime cliff and slope but separately 

identifies scrub that would form part of that mosaic within the MCS PHI as a separate class. 

This also occurs for other habitats mapping that uses the IHS classification system. 

3.1.2 Cornwall Survey: Mullion Cove 

A 400m stretch on the west side south of Mullion Cove was selected as a hard cliff geology 

and are listed as grade A/B SACs for H1230 Vegetated sea cliffs of the Atlantic and Baltic 

coasts (The Lizard Cornwall and Isles of Scilly SSSI). The Mullion Cove cliffs are of 

magnesium-rich serpentine and hornblende schist hard rock geology and are part of the 

Lizard National Nature Reserve, managed by the National Trust. Lizard sites are also part of 

Figure 2 Map of habitat 

boundaries and mosaics within 

the Haycock and Jay 2021 

survey datasets. NVC mosaics 

and percentage occurrence. 

A: MG1a/W23 60/40 

B: MG1a/W21 70/30 

C: MG5b/MG11b 80/20 

D: MG1a/W21 70/30 

E: CG2c/W23  60/40 

F: MG1a/W21 70/30 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsac.jncc.gov.uk%2Fhabitat%2FH1230%2F%23%3A~%3Atext%3DThe%2520Lizard%2520Cornwall%2520and%2520Isles%2520of%2520Scilly&data=04%7C01%7Ccth%40geodata.soton.ac.uk%7C9410caf397e8450925c208d9a4246ee8%7C4a5378f929f44d3ebe89669d03ada9d8%7C0%7C0%7C637721298652268793%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=pWVY%2FelrwCHTpa4tU1mBS1hj3WyhqvGOj5giZGRfPeg%3D&reserved=0
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Natural England’s Long-term Monitoring Network (LTMN) and includes field survey data 

including vegetation quadrat data from 2013, 2017 and 2022, and supports a complex 

sequence of cliff vegetation with maritime heath and grassland. LTMN The Lizard NNR - 

target habitat heathland - LTMNB40 (naturalengland.org.uk)  there is an excel file for 2022, 

2017 and 2013 habitat quadrat data for 54 sites that covers both Mullion Cliff to Predannack 

Cliff SSSI and West Lizard SSSI. 

Recent habitat survey of these sites is available as NVC (Bennallick, Ian and French Colin 

(2021) and available as GIS files. This is a novel approach to resurvey that uses the existing 

polygon structure from past surveys, added attributes to the GIS table to record the history 

of change and where necessary split and/or changed polygons to assign new NVC codes. 

This data builds on the earlier survey of the locations, basing its polygon structure at least 

partly on the structure of the features mapped previously by Byfield and Hopkins (1979) and 

Close (1990) and the structure of the data includes the earlier reference within mapped 

features. 

https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpublications.naturalengland.org.uk%2Fpublication%2F5317329482153984%3Fcategory%3D5316639066161152&data=04%7C01%7Ccth%40geodata.soton.ac.uk%7C9750ec5c5c82454b9b4208d9d41bdec4%7C4a5378f929f44d3ebe89669d03ada9d8%7C0%7C0%7C637774038723251986%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=HmHpXGIcodK3NC1Zaa8WliWyU1PPtrpnwhiPg1Tx8nk%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpublications.naturalengland.org.uk%2Fpublication%2F5317329482153984%3Fcategory%3D5316639066161152&data=04%7C01%7Ccth%40geodata.soton.ac.uk%7C9750ec5c5c82454b9b4208d9d41bdec4%7C4a5378f929f44d3ebe89669d03ada9d8%7C0%7C0%7C637774038723251986%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=HmHpXGIcodK3NC1Zaa8WliWyU1PPtrpnwhiPg1Tx8nk%3D&reserved=0
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Figure 3 Habitat mapping to NVC (where possible) at Mullion cliff line, Cornwall, UK (Bennallick and French (2021)) 

The site is in Cornwall Area of Outstanding Natural Beauty, previously known as ‘Mullion 

Cliffs to Predannack Head’, partly a Biogenetic Reserve, partly within the Lizard National 

Nature Reserve, part owned by the National Trust. The site is a mix of heathland and 

maritime grasslands and with rock crevice communities lower down the cliff profile and 

coastal wetlands cliff flush communities. 
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Table 3 Available imagery / data Mullion Cove 

Dataset Date 

Orthorectified aerial 2012, 2018 

Lidar 2018 -19, 2010 -11, 2007 -08 

False colour infrared imagery 2018, 2012 

Coastal Vegetation Bennallick, Ian and French Colin 

(2021) 

2017, 2021 

 

Datasets from the National coastal monitoring programme also include a coastal vegetation 

mapping, but the results are very different from the NVC datasets and many MC 

communities and clifftop MCS habitats are missing from the survey. Access to the historic 

data would resolve this before undertaking the field surveys (including for the national 

monitoring). 

The most recent surveys were conducted by remote view and field surveys. Similar to the 

Reighton surveys there are a number of polygons described as mosaics (two classes) and 

also habitats that do not correspond to NCV communities (classed as ‘no NVC’). 

Inaccessible cliff was all classified as MC1 NCVC community but may include bare ground / 

bare rock. In addition, the survey noted that the were some transcription errors in 

converting the Byfield and Hopkins survey to digital form; some of the habitat polygons 

were attributed incorrectly and some deleted. 

3.2 Pre-departure flight planning: 

Environmental Sensing at Southampton (ES@S) flight planning protocol involves checking for 

flight restrictions and NOTAMs (NOTice To AirMen) ahead of the planned flights and 

incorporating any further information into a risk assessment for flying (see Appendix A for 

exemplar RA). In the case of Mullion Cove, restrictions due to the Navy airfield (RNAS 

Culdrose) meant that permissions were required from the airfield in order to unlock the 

built in DJI flight restrictions. This unlock procedure is carried out via a DJI web interface, 

whereby the permission letter is uploaded, and a polygon flight area defined for the required 

window of operation. 

All equipment is checked, and batteries charged prior to departure for the field in 

accordance with our standard operations manual. 

3.3 UAV aircraft and sensor packages used for these trials: 

3.3.1 DJI M300 RTK with TopoLidar 100 

This M300 RTK platform is an enterprise level quadcopter which is capable of >30 minutes 

flight time with the TopoLidar sensor payload attached. It has multiple failsafe features, 

including collision avoidance sensors. The TopoLidar sensor combines a Velodyne Puck Lite 

laser scanner with a high precision Inertial Motion Unit (IMU) and an L1/L2 GNSS receiver. 

It has a detection range of ~100 m and weighs less than 1 kg.  
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Figure 4: The DJI M300 RTK UAV with TopoLidar 100 sensor payload. 

3.3.2 DJI INSPIRE II with modified X4S direct georeferenced camera 

The Inspire II platform provides a fight time of around 27 minutes with the X4S camera 

attached. It is a very lightweight platform, suited to rapid deployments in remote areas. The 

X4S camera is a standard RGB (Red, Green, Blue) 1” CMOS sensor, with a mechanical 

shutter (which is preferable for the collection of aerial imagery for the purpose of creating 

high resolution models and orthomosaics). 

 

Figure 5: The DJI INSPIRE II UAV with modified X4S direct georeferenced camera payload. 

3.3.3 DJI M600 Pro with MicaSense RedEdge MX and Applanix APX15 INS. 

The MicaSense RedEdge-MX is a five-band multispectral camera, with wavelengths ranging 

from blue to infra-red (see Table 4), including a red edge band designed to enhance 

separation between different vegetation characteristics. The post-processed positional and 

orientation accuracy is typically between 1-2 cm in the X and Y planes, 2-5 cm in the Z 

plane, and 0.1 degrees in orientation. This setup is mounted to a heavy lift, multirotor UAV, 

in this case a DJI M600 Pro. Although this is the current UAV being used, smaller UAVs with 

a lighter payload capacity could also be used. For a very detailed overview of the setup, see 

Tomsett and Leyland (2021). 
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Table 4: The waveband characteristics of the MicaSense RedEdge-MX multispectral sensor. 

Band Wavelength (nm) Band Width (nm) 

Blue 475 32 

Green 560 27 

Red 668 14 

Red-Edge 717 12 

Near Infra-Red 842 
57 

 

 

 

Figure 6: The DJI M600 Pro UAV with Micasense RedEdge MX (inset image) and Applanix APX15 INS payload. 

3.3.4 GNSS equipment 

In addition, raw RINEX GNSS data was recorded throughout all days of operation on a 

REACH RS2 unit and a Leica GS15 base station. 

 

Figure 7: GNSS equipment consisting of a Leica GS15 (left) and Reach RS2 (right). 

3.4 Mission planning and data collection: 
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3.4.1 DJI M300 and TopoLidar 

All TopoLidar missions were planned using Universal Ground Control Station (UGCS), 

which is commercial software that is capable of planning and uploading missions to DJI 

aircraft (see Appendix B – Software). There are currently no freeware mission planning 

applications that have this level of functionality for UAV based LiDAR. 

Mission planning in UGCS consists of using the area scan tool (Figure 8) in conjunction with 

take-off, landing and any inertial initialisation routines. For the TopoLidar sensor, a figure of 

eight (Figure 9) is flown prior to the survey to initialise the accelerometers ready for 

navigation. 

 

Figure 8: UGCS mission planning for a flight at Mullion Cove. 

 

Figure 9: Detail of the inertial navigation system (INS) initialisation procedure planned in UGCS, consisting of a clockwise 

and anticlockwise circular flight path (highlighted in the red box). 
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3.4.2 DJI Inspire and X4S 

Mission planning for the DJI Inspire was undertaken in DJIs own surveying app, Ground 

Station Pro. This automatically detects the camera being used by the UAV, and for a given 

manually drawn survey area will calculate flight lines based on the front and side overlap 

specified. The flight height of the UAV can also be adjusted in order to match the desired 

ground resolution requested, enabling control over the survey design both pre-deployment 

and whilst in the field.  

Once designed, the route can be uploaded to the UAV and flown autonomously, with the 

camera triggering automatically and the precise timestamp of each photo recorded in the 

on-board GNSS sensor for post-processing.  

3.4.3 DJI M600 Pro and MicaSense RedEdge MX 

Missions planning for the DJI M600 pro was again undertaken in DJIs Ground Station Pro. 

However, due to the camera not being integrated with the UAV, flight planning requires 

more manual involvement (note, recent advances in technology mean this is a more fluid 

and integrated process now). For this setup, manual flight lines are drawn with elevations 

relative to the take-off height set for each waypoint. The separation between these 

waypoints is determined by the user, with MicaSense providing an online calculator for 

identifying the flight line separation needed based on flight height and overlaps.  

For each survey, a series of parallel lines were drawn with a separation of 20 m to ensure a 

minimum of 50% side overlap, and a flight speed set to allow at least 80% forward overlap 

based on a 1.5 second triggering interval from the camera. Flights were designed to capture 

imagery at the top of the cliffs, the cliff face, and the base of the cliffs, to get a good final 

model of the survey region. The flight height of the UAV was adjusted for each survey line 

to maintain as consistent ground resolution as possible. The flight heights varied between 30 

– 50 m above ground level depending on the steepness of the cliff (a variation in pixel size of 

1.3 – 2.1 cm). 

Prior to survey, a sensor is connected to the camera which monitors incident light, so 

changes in lighting conditions can be accounted for in the image processing. In conjunction 

with this, a calibration panel is paced on the floor and a picture of the panel taken from the 

UAV when hovering above. This panel has factory calibrated reflectance values which can 

then be used to adjust the images so that any comparison made between different camera 

systems is consistent.  

3.4.4 Comparison of flight parameters and outputted data 

The various flight parameters used for each of the platform and sensor combinations can be 

seen in Table 5. Note, whilst RGB imagery and LiDAR data was obtained at both sites, 

Multispectral imagery was only obtained at Mullion due to weather constraints at Reighton. 
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Table 5: Flight parameters for each of the UAV and snsor combinations. Note that ground resoltuion for UAV LiDAR is 

not a pixel size, but the average seperation between two points on flat ground. 

Location Date UAV and 

Sensor 

Flight height 

(m, AGL) 

Area 

(ha) 

Flight speed 

(ms-1) 

Ground 

Resolution 

Reighton 10.03.22 M300 

TopoLiDAR 

50 35 5  

Reighton 11.03.22 Inspire X4S 45 8 5 1.2 cm pixel 

Mullion 16.03.22 M300 

TopoLiDAR 

50 10 5  

Mullion 17.03.22 Inspire X4S 80 10 5 2.3 cm pixel 

Mullion 17.03.22 M600 

Multispec 

50 15 5 5 cm pixel 

 

Flight heights are set to optimise data collection and ensure enough overlap of images for 

post-processing and that each area of the ground is in view of two Lidar scans. All flight 

heights reported in Table 5 are Above Ground Level (AGL; as opposed to Above Mean Sea 

Level), see Figure 10. 

  

Figure 10: Height modes available in UGCS mission planning. AGL was used for this work. 

 

3.5 Data Processing: 

3.5.1 MicaSense RedEdge MX 

UAV images were downloaded from the camera after each flight. The images of the 

calibration panel were separated from the remaining photos, to be used in the calibration 

procedure.  

The positional data from the on-board inertial motion unit was downloaded, and then 

imported alongside the post processed base station data into the positional post-processing 

software PosPac UAV (see Appendix B: Software used in the assessment). The position of 

the raw UAV data is then updated using forwards and backwards Kalman filtering algorithms 

to obtain a refined UAV track, and an updated location for each image capture timestamp is 

then produced. 
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Each image timestamp is used to provide reference information for the photos imported 

into the image post processing software Agisoft Metashape. Each image has its position 

updated by matching the time of imagery from the image metadata, and the time in the 

position files. This updates the camera locations within the software, and positional accuracy 

was set to 10 cm and rotational accuracy to 1 degree, to allow flexibility when aligning the 

camera positions.  

3.5.2 X4S directly georeferenced camera 

The RGB images of the X4S are processed in much the same way as the MicaSense. Images 

are downloaded along with corresponding GNSS data and then Topodrone geotagging 

software is used (part of the topodrone processing suite – See Appendix B). The software 

assigns a geolocator tag to each image. The images can then be imported into Agisoft 

Metashape. In contrast to the multispectral imagery, there is no orientation data associated 

with this workflow, only positional data. 

3.5.3 Agisoft Metashape processing (for Micasense and X4S RGB images) 

For each flight, the imported photos are imported and aligned using feature detection 

algorithms to identify ‘tie’ points in multiple photographs, whereby objects can be detected, 

tracked, and then moved to align them accordingly (known as Structure from Motion, SfM).  

Once this has been done, a dense point cloud can be produced based on the locations of 

points within the image that match up with other points in overlapping imagery. This dense 

point cloud can then be used to make 3D models of a scene, or in this case produce an 

orthomosaic, which creates one image from the entire study region (Figure 11).  

Inherently, the ability to produce good models lies in being able to know where the camera 

positions are, which is accomplished by the direct georeferencing, and the ability to detect 

points on the ground in the imagery. The latter in this scenario has proved challenging in 

certain regions, especially where the topography is varied and there are large areas of 

shadowing present. This makes it difficult to identify points within overlapping photos, and 

can subsequently cause poor alignment and scene reconstruction as is seen in places in 

Figure 14. 

Once the reconstruction has taken place, the resultant orthomosaics can be exported and 

processed in traditional GIS and Remote Sensing software or imported into environments 

for manipulation with languages such as R, Python, and Matlab.   
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Figure 11: Agisoft Metashape processing workflow (Source: Anders et al., 2020). 

3.5.4 TopoLiDAR Processing: 

The LiDAR data from the topodrone is downloaded from the sensor after each flight as a 

zip file. Processing involves using the bespoke Topodrone Post Processing suite (see 

Appendix B) for the initial two stages. 1) a trajectory file is created by processing the on-

board GNSS data from the TopoLidar along with the raw RINEX data from the GNSS base 

station. The base station position can also be input at this stage, calculated via an online 

precise point positioning service such as CNRS – see Appendix B). 2) The trajectory file 

(which includes the pitch, roll and heading data) is combined with the raw laser data to 

create a georeferenced point cloud. 

A third step, Boresight calibration, is then completed in LiDAR360 software (see Appendix 

B). Boresight calibration fixes errors which result from variations in mounting angles of the 

LiDAR unit, meaning that the same area on the ground, but measured from opposite flight 

directions, can have small discrepancies between the points. Table 6 reveals the boresight 

calibration statistics for the flights undertaken. Note that RMSE are relatively high here due 

to the vegetation and complex topography captured. 

Table 6: LiDAR360 boresight calibration statistics. Heading is typically the hardest aspect to calibrate, hence the larger 

variations in degree value. 

Location Date Δ Roll (°) Δ Pitch (°) Δ Heading (°) RMSE pre 

(m) 

RMSE post 

(m) 

Reighton 10.03.22 -1.3638 -0.02258 -1.01907 1.49 0.35 

Reighton 11.03.22 -1.2013  0.06705 -1.14006 1.34 0.26 

Reighton 11.03.22 -1.1828  0.00694 -0.82896 1.46 0.28 

Mullion 16.03.22 -1.2053  0.05919  2.42399 1.03 0.22 

Mullion 17.03.22 -1.1375  0.03705  2.37793 0.86 0.16 

Mullion 17.03.22 -1.1807 -0.01611  2.3873 0.94 0.19 

 

3.5.5 Machine learning classification 

In order to classify the scenes, machine learning techniques were tested by combining a 

number of different layers of information. This included traditional image bands in the red, 
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green, and blue, multispectral bands in the red-edge and infra-red regions of the electro-

magnetic spectrum, and NDVI values from imagery datasets, and topographic information 

such as slope, canopy height, planarity (smoothness), and roughness (vertical variation) from 

the LiDAR datasets.  

NDVI layers were created from the multi-spectral imagery, utilising both the red-edge and 

near-infrared channels to create two NDVI layers, maximising distinction between 

vegetation classes. Topographic datasets were created using the open source 

CloudCompare (https://www.danielgm.net/cc/) software to analyse the 3D point cloud 

created using the LiDAR data. Planarity was assessed over a 2 m footprint whereas 

roughness was computed over a smaller 0.5 m footprint. The reasoning for this was that to 

identify smooth surfaces with small breaks (such as a cliff), a larger footprint would be 

required, and to identify areas of high roughness and distinguish the edge of patches of 

vegetation, a smaller footprint would be required. Slope was calculated after vegetation had 

been removed using a cloth surface filter (ref) in order to only be using ground points for 

this aspect. 

The classification approach was split into two approaches, one for Mullion and one for 

Reighton. First, a traditional pixel-based image classification approach was undertaken at 

Mullion. This uses training data to identify the spectral and structural characteristics of 

different ‘user-defined’ regions of the image (e.g. short grasses, exposed rock, water) and 

then classify the remaining pixels based on this information. Second, an object-orientated 

approach was undertaken at both Mullion and Reighton whereby instead of analysing images 

on a pixel-by-pixel basis, it combines pixels of similar spectral values together (such as a 

rock, or patch of grass) to create individual objects which can be classified. The level of 

detail of these objects (both spatially in their size and spectrally in their distinction) can be 

determined by the user.  

For the pixel-based and object-orientated based approaches at Mullion, different 

classification techniques were tested. These included NN (Nearest-Neighbour), SVM 

(Support Vector Machines), and RF (Random Forests), totalling 6 different classification 

maps for Mullion. For Reighton, the impact of adding additional datasets for classification 

was investigated, by using just RGB imagery, RGB imagery and a LiDAR CHM, and finally 

RGB imagery, a LiDAR Canopy Height Model (CHM), and LiDAR based surface planarity 

and roughness. These were all tested with a SVM classifier for ease of comparison, allowing 

exploration into the depth of data collection required for beneficial mapping. 

Training datasets were created based on the imagery and from survey notes in the field. 

This identified a total of 13 classes of data, listed in Table 7. These were determined based 

on the rough broad classes present in the National Vegetation Classification, with the aim of 

allowing a field user to update these regions with more detailed information or correct 

them accordingly. Some classes are only present at one site (e.g. Inland water) or are under 

the same broad classification name (e.g. Shrub Class 1 is different between Mullion and 

Reighton), but in reality, represent different assemblages.  
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Table 7. Classes used to inform the classifications undertaken at Mullion and Reighton Sands. Descriptions indicate both 

the type of class present as well as details on how they were identified. Example images of these class types can be 

seen in the Image column for visual distinction. Not all classes were present at both Mullion and Reighton.  

CLASS DESCRIPTION PRESENT AT 
SEA WATER Areas explicitly containing sea water 

 

Mullion 

INLAND WATER Areas of water not connected to the sea directly 

in any way 

 

Reighton 

CLIFF This included area of steep bare rock which you 

would typically class as a cliff face, alongside the 

rocks at the interface with the sea. 

 

Mullion 

EXPOSED ROCK This differed from cliffs due the orientation of 

slope and their location, focusing on those above 

the steeper cliff line. 

 

Mullion 

BARE GROUND Areas of ground with no vegetation presence 

that was not from exposed rock. Examples of 

this would be muddy ground or footpaths that 

have removed vegetation but not exposed rock. 

 

Both 

SHORT GRASSES Grasses which are short in nature, typically 

grazed or heavily trodden from foot traffic. 

 

Both 

LANDSLIDE Areas (specifically at Reighton) where there was 

evidence of erosion typically underneath the 

base of the cliff. 

 

Reighton 

LONG GRASSES Areas where there is lower grazing and/or foot 
traffic, allowing grasses to grow longer, without 

the presence of larger vegetation. 

 

Both 

NON-

VEGETATED 

GROUND 

Sections where vegetation was not present, 

typically found under the cliff edge. These were 

not exposed ground, more ground that had no 

vegetation presence instead. 

 

Reighton 

SHADOW Areas of shadow severe enough that it would 

not be possible to discern which of the other 

categories an area fell within. 

 

Both 

SHRUB CLASS 1 

(MULLION) 
Distinguishable areas of vegetation which are 

taller and different in colour to the grasses at 

Mullion. These typically from in communities 

which likely comprise of X (e.g. gorse) 

 

Both (Different 

Vegetation) 

SHRUB CLASS 2 

(MULLION) 
As above, a distinguishable category of 

vegetation from which classification can be 

Both (Different 

Vegetation) 



22 | P a g e  

 

separated from both short and long grasses, as 

well as the other shrub class. 

 
TREES Taller vegetation, clearly identifiable in the 

canopy height models. These are larger in height 

than shrub classes and are distinguishable from 

other vegetation types. 

 

Reighton 

 

4 Results: 

4.1 Sensor Specific Outputs 

Larger and more detailed graphics for individual outputs can be found in Appendix X, 

whereby there are also links to online viewers to see the output 2D and 3D datasets for 

some of the data.  

4.1.1 RGB Imagery 

The DJI X4S RGB imagery SfM output delivers a fully coloured point cloud with spatial 

referencing errors (as quantified from check point Ground Control Points; GCPs) of <0.1 m 

in the X, Y and Z directions, as seen in Figure 12. The main points of interest here are the 

level of detail provided by the imagery as well as some associated topography, including 

areas of accumulation below the cliff from recent slips as well as the variable colouring from 

different vegetation types. The structure of these point clouds can also be used to create 

continuous orthoimagery of both sites, as can be seen in Figure 13. These datasets have 

resolutions of approximately 2 cm, providing a continuous basemap upon which further data 

analysis can be performed, or for use in mapping exercises either I the field or manually 

within mapping software such as QGIS or ArcGIS. 

 

Figure 12: SfM output from Reighton, showing the ability of the software to build out accurate topography, but with a 

tendency to smooth features and lacking penetration through vegetation.  
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Figure 13. Orthomosaics outputs from Reighton (left) and Mullion (right), with a further panel highlighting the detail of 

the final datasets resolution. 

4.1.2 Multispectral Imagery 

In contrast to the above, the SfM outputs for multispectral imagery do not produce fully 

coloured point clouds at present. However, they do produce 5-band orthomosaics which 

can be used in the traditional spatial mapping software outlines prior. 

The MicaSense produces a composite raster image which includes the red-edge and near 

infra-red bands, which are sensitive to aspects of vegetation type and health (e.g. 

chlorophyll). These can be seen in Figure X below, showing the reconstruction of the 

coastline at Mullion. 

 

Figure 14: Orthomosaic of the Mullion Study Site (left) and False Colour Composite (FCC) comprising of the Infra-Red, 

Red, and Green wavelengths. 
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The coastline at Mullion has been reconstructed well on the whole, with large areas of cliff 

top visible as well as the cliff face sections moving down towards sea level. However, at the 

same time, towards the North of the site, and especially clear in the FCC image, there has 

been poor image alignment which has failed to distinguish clearly the transition from cliff top 

to sea, and resulted in parts of the cliff being missed or in some case duplicated in the 

imagery. This is most likely due to the sun’s position during the spring surveys causing 

significant shadowing in this area, especially parts with North-facing slopes, as well as various 

image resolutions during acquisiton despite attempting to control for this during the mission 

planning phase. In contrast, the southern end of the study area is reconstructed to a higher 

standard, producing a much better final model, as seen in Figure 14. 

4.1.3 LiDAR 

The LiDAR surveys undertaken produce a full georeferenced point cloud which can be used 

to both interrogate the structure of vegetation above the surface, or have the vegetation 

removed to leave only the surface morphology. This is especially important at Reighton 

Sands where the structure of the vegetation is more variable and complex, meaning to both 

help identify different types of vegetation and determine the underlying morphology, LiDAR 

can be an effective tool. Examples of these outputs can be seen in Figures 15-18 below for 

both Reighton Sands.  

 

4.2 Data Analysis 

4.2.1 Introduction 

Data analysis has sought to explore various element of the CSM Monitoring attributes 

requirements that include variables including habitat, geomorphology, vegetation structure, 

Vegetation composition and indicators of local distinctiveness (see Table 1). The analysis 

reported here includes the 3D vegetation extraction [4.2.2] (vegetation structure), habitat 

classification [4,2.3]. The geomorphology (cliff change analysis) is widely reported in other 

studies and the indicators of local distinctiveness are primarily specific habitat classes (other 

than the presence of notable species).  

4.2.2 3D Vegetation Extraction 

Much of the analysis below is built upon work undertaken within Tomsett and Leyland 

(2023), which seeks to characterise the complexity of vegetation structure. It predominantly 

focusses on Reighton Sands due to the variability in vegetation type and structure, but the 

same processes were used to extract bare earth and canopy height models at Mullion. 

To segment points that are likely representing the ground surface, and those that are 

reflections from vegetation or other surface features, a CSF (Cloth Surface Reconstruction) 

is performed within the CloudCompare environment (Zhang et al., 2016). In principle, this 

inverts the point cloud and drapes a cloth over the scene to extract the underlying terrain, 

with the user able to adjust the resolution and ‘flexibility’ of the cloth depending on the 

complexity of the surface. Such analysis will also benefit those looking beyond vegetation 

assemblages, for example geomorphologists mapping slope features and processes, making 

the data acquisition more economically justifiable. 
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Once undertaken, points that are deemed to be within a user define threshold limit of this 

cloth are counted as ground surface points, and those outside this threshold as non-ground 

points. In this case, non-ground points are likely to be from vegetation. The resultant 

classification of ground (brown) and non-ground (green) points can be seen in Figure 15.  

 

Figure 15: Output from a Cloth Surface Reconstruction to segment bare earth and vegetation. Points displayed in brown 

represent the surface, and those in green represent vegetation. Red lines mark the approximate locations of the 

transects shown in Figures 16 and 17. 

From Figure 15 alone, it is hard to visually gain an understanding of classification 

performance, as large swathes of green are present obscuring the ground points below. To 

assess this in more detail, two transects are shown below, one down the cliff perpendicular 

to the shoreline (Figure 16), and a second across a vegetated gulley feature were extracted 

(Figure 17). 

Figure 16 clearly shows the changing slope of the cliffs, and if all vegetation points were to 

be removed could be used to measure slope and pick out break points in the elevation and 

where risks of erosion/slumping may occur. It could also be used to relate the presence of 

vegetation to changes in erosion risk by comparing slopes of comparable steepness in 

vegetated and non-vegetated regions, as well as looking into how vegetation type and 

function may influence this also. However, at the cliff toe, it is clear some ground points 

have been classified as vegetation, where the cloth surface used to filter out these points has 

been too inflexible. The scalability of such approaches to examine the relationship between 

vegetation and slope is yet to be fully realised, but is an area of future research that may 

benefit a number of stakeholders. 

 

Figure 16: Cross section through a more sparsely vegetated section of the cliff. 

Figure 17 shows a very different profile, with a clear outline of the vegetation structure 

within the gulley, picking out both the canopy layer, below plant structure, and the gulley 

Figure 17 

Figure 16 
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floor. The clear advantage with this data is the ability to reconstruct individual vegetation 

models, helping with possible species identification, extraction of vegetation properties, and 

linking to slope stability or habitat models. The clear benefit is also shown in the second 

panel of this figure, whereby the different first and last return data is shown highlighted in 

yellow and blue, with the last returns picking out extra detail in the canopy that would have 

otherwise been missed. This sort of extraction would not be feasible with imagery alone, as 

not enough camera angles are available to fully reconstruct each piece of vegetation, and it is 

not possible to ‘see’ through a fully leaf-on canopy. The effect this has on CHM construction 

is outlined in section 4.2.2.2. 

 

 

Figure 17: (A) Cross section showing vegetated vs ground points across a gulley (B) First and last returns highlighted in 

yellow (first) and blue (last), demonstrating the power of laser scanning in vegetated environments.  

 

Figure 18: Terrain (DTM) for the Reighton study area, showing the form of the cliff slope and the beach at Speeton 

Sands, the valley bisecting the cliff line (Old Beck) and the two / three cliffed embayments of Black Cliff, Middle Cliff and 

A 

B 
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New Closes Cliff (as described in the first edition OS 1:25 inch mapping) from left to right in the image. The prominent 

ridge between the Black and Middle Cliff was termed the Black Cliff Nab.   

Finally, the result of undertaking this classification is that those vegetation points can be 

removed to produce a detailed 3D surface of the study area, which can be used in a variety 

of applications, from mapping to modelling. An example of this surface for Reighton is 

shown in Figure 18, where the changes in slope gradient and angle vary widely throughout 

the study area, and would be missed through SfM alone. This suggests that not only does it 

have benefit for habitat mapping, but also geomorphological surveys as well.  

4.2.3 Habitat Classification 

As noted in 3.5.5, it is not possible with these datasets to classify the areas of interest at 

both sites fully down to NVC classification standards, and would also require a large 

campaign of data corroboration on the ground (see comments in Section 5). However, 

obtaining base level classifications of broad habitat types, and increasing specificity where 

possible, could help to expand coverage and also supplement in-field workflows. The 

following sections review the performance of the classifications undertaken at Mullion and 

then Reighton Sands, before synthesising the general patterns which can be seen in both. 

4.2.3.1 Mullion Classification Analysis 

The outputs from performing several different classification types can be seen in Figures 19 

and 20, whereby the former shows the classifications over the entire reach, whereas the 

latter demonstrates the classifications over a smaller zoomed in subsection along one of the 

cliff edges. It is worth noting, that although some data was collected on the types of 

vegetation present, a full ground corroboration dataset was not collected and so the 

accuracy of the outputs cannot be determined beyond that of visual comparisons to the 

orthoimagery. This applies to both the Mullion and Reighton classifications. 

Of note here is the differences obtained in output classifications both between pixel-based 

and object-oriented methods, as well as those between the various classification procedures 

employed. The clear difference between pixel and object-based approaches is the visual 

interpretation of the results. The object-based approach as expected provides a visually 

easier to interpret image with larger areas of homogenous classifications, creating defined 

zones of habitat. This is in contrast to the pixel-based approaches, whereby a more granular 

classification can lead to an excessive ‘salt and pepper’ effect which in turn leads to a 

number of classified pixels being encased by a different class. Whilst entirely plausible, this is 

more likely to occur due to an overlap in class definitions (i.e. similar spectral profiles) then 

real habitat composition. To eliminate such effects, a series of smoothing operations based 

on the spatial attributes of homogenous areas would be undertaken, which would involve 

making assumptions around likely minimum sizes of each class. Object-based approaches 

attempt to overcome this by grouping similar areas prior to the classification procedure, 

although as a result some of the more complex habitat mosaics may be missed.  
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Figure 19. Output classifications for different land cover classes as outlined in Table 7 in section 3.5.5. The left column 

indicates classifications using a pixel-based approach, with the right object-oriented. Each row denotes the type of 

classification method undertaken. Finally, an RGB orthomosaic is provided for reference. The orange square denotes the 

area focussed on in Figure 20. 
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Figure 20. Focussed areas (as shown in orange square in Figure 19) from output classifications for different land cover 

classes as outlined in Table 7 in section 3.5.5. The left column indicates classifications using a pixel-based approach, 

with the right object-oriented. Each row denotes the type of classification method undertaken. Finally, an RGB 

orthomosaic of this focussed area is provided for reference.  
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Use of the NN methodology, which assigns classes based on the closest match in the 

training data, provides substantially different results between the pixel and object-based 

approaches. Moreover, the results of this method tend to differ greatly when compared to 

the RF and SVM outputs, with clear misclassifications of sea water and overclassification of 

long grasses. However, the more distinct spectral and structural features of the shrub 

classes appear to be picked out as well in the NN model as the RF and SVM for these 

zoomed in areas. This pattern holds across the entire study area, whereby long grasses 

dominant despite their being a variety of vegetation and non-vegetation classes in their 

place. Across the study area in Figure 19, it is clear that RF and SVM models produce 

similar, albeit different results, with the zoom panels in Figure 20 exemplifying the subtle 

differences. RF outputs appear to align better overall within the zoomed area, especially 

regarding the different types of grasses, and transition to the cliff/shadow region of the 

image. This fits with the wider scientific consensus that many machine learning algorithms 

are suitable, so long as there is sufficient training data to learn from.   

4.2.3.2 Reighton Sands Classification Analysis 

The main purpose of assessing classifications at Reighton, was to identify how adding LiDAR 

derived datasets would impact the outputs of the classification. Figure 21 displays three 

different classifications, using RGB alone, then RGB and canopy height, followed by RGB, 

canopy height, and point cloud planarity and roughness. There is a distinct improvement in 

classification performance with the inclusion of LiDAR derived datasets, specifically in the 

reduction of areas marked as tree classes in the RGB imagery alone. The survey here was 

undertaken during winter, with leaf-off conditions, contributing to this change in 

performance. Primarily, trees without leaves will appear similar to the ground vegetation 

below due to the lack of leaves to differentiate in colour, and also allowing the ground level 

to be visible inside the canopy footprint. Likewise, this allows the LiDAR to obtain a full 

structural profile to obtain true ground points, and as such create good canopy height 

models. The clear distinction in tree height then makes classifying them a far simpler task. 

Furthermore, going beyond the canopy layer to identify information about the surface 

properties such as roughness (surface variability) and planarity (surface smoothness) also 

appears to show some benefits. This is particularly evident around the edge of the study 

area where grasses dominate the imagery. However, in the RGB and for some of the RGB 

and CHM model areas, there is a tendency to indicate shrub and tree presence where there 

is none over particularly large scales. Yet this same inclusion also appears to overclassify the 

extent of inland water to a worse extent than the other two models, but overall performs 

the best, highlighting the benefits of both structural and spectral datasets for these methods.   
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Figure 21. Output classifications from Reighton, showing the impact of including LiDAR derived datasets on model 

performance. Each heading refers to the image below, with the orange square displaying the extent of the imagery 

shown in Figure 22. An orthoimage is provided for reference.  
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Figure 22. Area of interest highlighting the changes in output classifications when including LiDAR derived datasets on 

model performance. Each heading refers to the image below and an orthoimage is provided for reference.  

The improved performance with LiDAR data is highlighted in Figure 22, with the extent of 

the inland water being better represented, and a clear reduction in the tree class extent 

over areas which are seen to be long grasses and shrubs in the orthoimagery. As discussed 

previously, the lack of ground truthing makes it harder to assess the correct classification of 

trees, but the alignment with areas of higher value in the CHM is good, and the general 

pattern of vegetation in the orthoimage is mimicked in the classification. 

Of note is the ability to obtain 3D models from imagery alone. As a comparison exercise, a 

CHM model was produced using the same methods for the imagery point cloud as the 

LiDAR point cloud for Mullion, to understand what would be produced from a single 

sensor. The results of this can be seen in Figure 23. 
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Figure 23. Comparisons between CHMs derived from UAV imagery and LiDAR, with the difference in these outputs 

shown in the right panel, whereby blues represent a larger CHM in the LiDAR, and brown in the imagery. There is a 

clear increase in canopy heights derived from LiDAR as would be expected, as well as larger imagery heights extracted 

around the cliff edge and some flatter areas.  

As expected, the more consistent CHM is derived from LiDAR based on field imagery 

comparisons. The areas where vegetation is present show varying heights, with higher 

values associated with tree classes. The imagery outputs show a more sporadic pattern 

probably where large trees are present and picked out in the images, but not in the smaller 

shrub species where the imagery cannot obtain a true ground surface in comparison to the 

LiDAR. There are also more areas associated with a higher canopy in the imagery around 

the cliff edge and areas of flat ground across the study area, indicating the extraction of a 

true bare earth model may not have been as successful. Although this level of detail CHM 

may be suitable for improving classifications, it is unlikely to improve them to the extent of 

LiDAR derived models especially in areas of denser and smaller vegetation where obtaining 

a true ground surface is more of a challenge. This would be regarded as an even greater 

challenge for imagery in non-leaf-off conditions, where canopy penetration is highly limited. 

4.2.3.3 General Observations 

The main observations from this analysis fall into three distinct categories; 1) the type of 

classification procedure used, 2) the classifier that is used, and 3) the importance of 

structure in classification procedures. 

The above outputs highlight the differences in both pixel and object-based approaches. Pixel 

based approaches can offer more granularity, highlighting the small variations in land cover 

down to the scale of the pixel itself. However, this is not always useful, especially when the 

land cover of interest is several orders of magnitude larger than the pixel. For example, a 

cliff will likely look grey, smooth, and sloped for a classifier across the majority of the pixels; 

a tree however will have lighter and darker shades of green, different canopy heights, and 

varying texture. This is often what causes misclassifications at these fine resolutions. Using 

object-based approaches which group these similar pixels together helps to overcome these 

issues, and also produces a more readable output. Moreover, these object-based outputs 

help to define regions of classifications better and could arguably be used by field surveyors 

to help make decisions on the extent of identified habitats, helping to overcome one of the 

primary limitations of observer-based habitat surveying in inaccessible locations. 
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The type of classifier used in clearly important, whereby correctly classifying habitats is key 

for the method to be used moving forward. Both the SVM and RF classifiers performed well 

when visually compared to the habitats in the orthoimagery, providing an improvement 

based on more traditional nearest-neighbour methods. There were noticeable differences in 

the classification outputs of the RF and SVM techniques, and there are other classification 

methods available to refine outputs. The refinement process can take time, and also lead to 

classifiers being overfitted to a specific site, and therefore less transferable even to sites in a 

similar location or with similar habitats. As such, having a useful classifier which can aid field 

observers, or to provide an assessment of change in habitat extents may be more beneficial 

and provide the best trade-off in terms of time and usability.  

Finally, the classifiers used for comparing object and pixel-based approaches, as well as the 

type of classifier, all contained structural data. As outlined in Section 4.2.2.2, although it is 

possible to obtain structure from SfM, this tends to be of much lower quality and produces 

distinctly different patterns and values of canopy height when compared to LiDAR (Figure 

23). When you include LiDAR derived datasets into the classification, the model tends to do 

a better job at separating spectrally similar but different classes, such as trees and shrubs, as 

well as the pattern between different types of grasses. Although not undertaken here, 

including the imagery derived CHM would be unlikely to cause such an increase in 

performance and as a result limit the classification potential. The extent to which this 

additional information is required may be dependent on the goal of that survey, e.g. zone 

delineation vs classification as well as the type of habitats present, e.g. highly vegetated vs 

exposed.  

The other main benefit of obtaining LiDAR is the ability to relate vegetation to slope 

processes, as well as track geomorphic change and variables (such as cliff edges) through 

time over larger areas without the need for extensive surveying, helping to increase value 

for money for any specific survey. As a result, undertaken UAV surveys may not just reduce 

the time in the field for one particular purpose, but several. 

4.3 Wider applications of surveying 

The collection of UAV and remote-sensed datasets for assessing maritime cliff and slope 

environments present several benefits over traditional field survey, especially in hard-to-

reach areas and for improving the quality of the baseline habitat extents. Field-based 

methods for delineating habitat on steeper slopes and hazardous areas are often uncertain – 

even where they are informed by use of aerial photographs to support boundary definition.  

Thus, drone technology or drones combined with field survey offers improvements over 

field assessment alone, allowing more detailed characterisation of a suite of measures in 

parallel, thus capturing many of the CSM variables like morphology, change, and vegetation 

structure as well as allowing for processing of breaks in slope and vegetation classification. 

The collection of the UAV sensing also provide a dataset that allows for further use, 

employing future processing innovations (e.g. machine learning enhancements). 

Alone, the UAV based data and processing may lack the potential to map to the complex 

categories of classification structure like NVC, but these categorisation levels are not 

strictly necessary for CSM level assessment. Alternative measures or surrogate measures of 
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community change (e.g. scrub development, slippages, bare ground) are more readily 

captured and on a closer repeat cycle than using field data alone.    

Primarily, in terms of monitoring, the use of UAVs allows for the collection of high-quality 

data at spatial resolutions not obtainable from satellite remote sensing. They also increase 

the temporal frequency available through current mapping procedures for improved change 

detection. This is especially pertinent when looking at geomorphological processes and 

monitoring; potentially including event (cliff erosion and collapse) monitoring. 

The ability to detect slopes for modelling landslide probability, detecting breaks in slope and 

cliff tops though vegetated reaches, understanding the spatial extent and magnitude of 

morphological change, can all be obtained in parallel with monitoring vegetation. Likewise, 

with appropriate planning, collecting data for any of these mentioned applications specifically 

would also likely provide useful data for MCS mapping. Furthermore, the data collected may 

also offer insights (especially when collected across a number of sites) into how different 

classes of vegetation show different morphological responses, and what this may tell us 

about landscape processes through eco-geomorphological interactions. 

Consequently, when viewing the cost-benefit of one technique over another, it is important 

to consider the wider benefits of them being undertaken. It is challenging for a land surveyor 

to undertake a habitat mapping exercise whilst delineating cliff lines, and vice versa. 

However, albeit with subsequent processing required by each group, a UAV survey can 

support both teams to improve both the spatial resolution and accuracy of their work. As 

such, the cost-benefit of undertaking or commissioning aerial surveys becomes increasingly 

justified. 

5 Data storage and long-term access 
A critical aspect of detailed data collection for habitat inventory and common standards 

monitoring is the ability to find, access, and use records of past cliff surveys. Appropriate 

metadata to support re-use becomes essential, including the details of acquisition, post-

processing, and licencing conditions. These requirements are more important for digital data 

over field based records given the data volumes, changing formats, software compatibilities 

and storage media as well as the challenges of long-term access to the data. 

Metadata should be compliant with national standards and include specific elements related 

to the nature of the survey platforms (JNCC 2019) and the Marine Environmental Data 

Information Network (MEDIN) standards2 and related controlled vocabularies. This should 

include: (a) general information about the dataset such as name and origin, (b) details about 

data acquisition including sensor types, flight details, and date, (c) data processing such as 

software choices and parameters, (d) quality including 3D accuracy compared to GCPs and 

CPs, (e) data format and access, and (f) applications and limitations including known issues 

and any planned data updates will be undertaken.  

NE uses the UK Gemini metadata3 standard for spatial data and is mandatory for public 

sector bodies where the data is in scope for INSPIRE (which maritime cliff and slope would 

 
2 MEDIN data guidelines: http://www.oceannet.org/marine_data_standards/medin_data_guidelines.html   
3 GEMINI Metadata standards 

https://guidance.data.gov.uk/publish_and_manage_data/harvest_or_add_data/harvest_data/gemini/#iso-19139 
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be). UK Gemini is based on elements within the international metadata standard ISO19139, 

but includes a geographic bounding box and requirements of INSPIRE records. UK Gemini is 

likely to need to be augmented to meet the needs of UAV data reuse and to cover raw data, 

processed data and generated products (habitat classifications / 3D vegetation structure, 

quality parameters etc). These should be recorded as a series metadata to ensure that all 

the relevant records for a survey campaign are discoverable together. The UK Gemini is a 

Discovery metadata standard and cover sufficient detail to fully describe the data, but is 

used for federated data discovery.  

An example of the dataset metadata form used by ES@S can be found in Appendix D. This 

should be maintained alongside any data location to inform future users about when the 

data can be used for a specific purpose, and when it cannot.  

Long-term access should enable all users to find and have access to the data through 

relevant data portals - including the MEDIN Data Centres. Although the records are 

‘coastal’ rather than ‘marine’ the MEDIN standards and archives do include some coastal 

data. Wherever possible (related to the survey purpose) the data should be open access and 

accessible under and Open Government Licence. The publication should follow the 

principles of Findable, Accessible, Interoperable and Reusable (FAIR, Wilkinson, 2016).  The 

NE Open Data GeoPortal is really only suitable for the derived products from analysis, and 

then typically only national coverages. Alternatives for managing discovery and long term 

access to the raw and processed cliff data and surveys includes the related coastal change 

monitoring data, habitat data etc are made available online as open data under the National 

Network of Regional Coastal Monitoring Programmes. The latter has the advantages of 

holding most of the other related coastal monitoring programmes records.  

6 Process for survey and mapping 
Use of UAV drones and aerial imagery for automated mapping of the range of variables that 

mark habitat classes and condition of soft and hard cliffs vegetation shows both advantages 

and limitations. The current approaches to mapping MCS habitats have largely been through 

field surveys, including use of remote observation where access is restricted and using 

vertical aerial images to help in mapping locations and boundaries.  

The ground survey approaches on MCS sites have typically been to the level of NVC survey 

protocols and use of quadrats with vascular plants and bryophytes identified (or visual 

assessment where access is restricted). The resolution of habitat boundaries and level of 

discrimination to NVC sets a high bar for comparative remote-sensed surveys, which 

typically cannot discriminate to levels that reply on species data (Crick 2013).  

The MCS field surveys have rarely sought to evaluate the condition of the habitat, rather 

they report the existence of the vegetation / bare ground coverage and species lists 

classified to NVC or often NVC sub-communities where there is a poor match to existing 

NVC classes or where there are mosaic habitats that are difficult to ascribe to a single NVC 

class. Thus, there is a gap in the availability of habitat condition data.  

If NVC level discrimination is required, then ground-based surveys seem inevitable, but 

perhaps integrated with and facilitated by UAV-based surveys that provide better boundary 

discrimination on sloping ground, additional condition parameters and high resolution multi-

https://naturalengland-defra.opendata.arcgis.com/pages/accessibility-statement
https://coastalmonitoring.org/
https://coastalmonitoring.org/
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spectral data in inaccessible areas. If characteristics of habitat condition are needed then 

UAVs surveys may again be more valuable, particularly at capturing structural information 

and helping to discriminate vegetation integrating structure derived from LiDAR data. 

Ground survey could also be modified to be more inclusive of condition criteria that are not 

currently included in most ground habitat surveys.  

There remains the issue for ground surveys of the number of habitats that are not well 

represented by NVC classes. A programme to resolve these, based on the existing quadrat 

samples collected through the many additional MCS quadrat surveys that have now been 

undertaken since Rodwell’s categorisation could help improve the situation.  

Using drones is not a low-cost option, although it has added advantages over just ground 

based surveys. A field surveyor may be able to survey the same area and map the data 

within the same time and without a large post-processing commitment. However, the 

quality and potential of the UAV data collected within the time allows more accurate 

depiction of boundaries, greater potential for derivation of other attributes of sites and 

opportunities for analysis and provides a more robust baseline from which future 

monitoring and change assessment can be undertaken. Currently, a positionally accurate 

RGB surveying setup ranges from £6,000 – £20,000 from DJI depending on the endurance of 

the UAV and resolution of the sensor, as well as the cost investment in training and 

accreditation for operating in the specific category of airspace. UAV-based LiDAR requires 

the greater endurance of high-end UAVs and also extra investment in sensors and software 

packages. 

The proposed procedure, if using remote sensed / UAV survey is set out below, but would 

still be likely to integrate secondary and primary (field survey) data sources for project 

planning and verifications / accuracy assessments.  

1. Discussions with local groups (NE Area Teams / landowners/managers) and existing 

coastal monitoring programme teams working on cliffs for other purposes, as well as 

for conservation and habitat mapping.  This may offer the opportunity to combine 

the interests of, for example the Regional Coastal Monitoring Programmes and the 

MCS survey requirements. 

2. Address the site ownership and permissions to undertake UAV surveys. 

3. Checking for flight restrictions, the category of flight to be undertaken, and 

NOTAMs (Notice to airmen) ahead of the planned flights and incorporating any 

further intel into a risk assessment and Mission Planning (section 3.4) 

4. Acquire existing field habitat and relevant secondary sensing data for the site and 

habitat data, where possible in geospatial formats. Most English sites will have some 

survey and possibly habitat surveys from the regional coastal monitoring 

programmes that can inform the site selection / processing and automated 

classification routines (e.g. as per Table 2 sources).  

5. Determine the sensor suite needed to collect relevant data and to generate outputs 

(e.g. sparse point clouds, dense point clouds, digital surface model, orthophotos) 

(section 5.2). 
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6. Mission Planning and Field data collection (3.4). Timing selection is a compromise 

between the best time for different aspects of the surveys. For terrain mapping using 

LiDAR a winter, deciduous time is preferred to ensure returns from ground surface. 

For vegetation a spring to early summer timing may be preferred, and from the 

perspective of surveying cliffs with nesting birds the post breeding season would be 

preferred. In this study surveys were conducted in winter (Dec – Feb) which may 

not be ideal from the habitat perspective. In some instances, a multi-date survey may 

be recommended. 

7. Processing of the UAV derived data as illustrated in section 3.5 to derive the 

relevant parameters for site mapping, classification and condition assessment. This 

will vary for the data type collection but consists of (1) georeferencing the sensor 

used, (2) obtaining a model of the surface based on sensor locations, and (3) creating 

output datasets resulting from this surface model. Using a combination of methods 

allows for the inclusion of structural, spectral, and indices data into classification 

models, which ultimately improves classification performance. Use of segmented 
(object-oriented approaches) rather than pixel-based approaches is likely to offer 

greater applicability for assisting and complementing ground-based surveys and 

monitoring condition assessment and common standards monitoring.  

8. Ground-truth data may still be needed, especially where the NVC classes are needed 

to meet reporting objectives. But there is strong potential to use UAV derived 

habitat boundaries, structural form data guide the evaluation of habitat parcels and 

the NVC classes, collect information and habitat boundary data in inaccessible 

locations and provide the basis for uncertainty / accuracy assessments. 

9. Ensure that within the context of commissioning surveys that the resulting data are 

in geospatial data formats with appropriate discovery and re-use metadata and that 

the data are made accessible under the OGL. This involves all data being readable in 

open-source software or as archival storage formats, having appropriate CRS 

information, and to be stored in a secure long-term storage repository. 

10. Ensure that the data (e.g. UAV, processed data and quadrat data) are effectively 

described by standardised metadata and are made available (open data) in a reusable 

format and are accessible in the longer term to enable future change mapping and 

integration of the data into PHI data products. Manage the data within a suitable 

repository. For example, the National Network of Regional Coastal Monitoring 

Programmes (NNRCMP) data store holds many of the other habitat and physical 

monitoring datasets for England and Wales and makes these available as GIS datasets 

as open data. This would allow a greater level of research use of the resulting 

surveys, (e.g. potential to re-run NVC classifications to identify new ‘undescribed’ 

habitats from the quadrat surveys from NVC surveys; re-evaluation of the habitat 

mosaics, update of Priority Habitat Inventories). 

11. Allow for updates and amendments to the provisional classification to be undertaken 

by a field observer, or for them to be provided with the base data for helping define 

the extents of habitat in the field –withing the context of a final derived product 

from the UAV surveys. 
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APPENDIX A – Exemplar CAA Risk Assessment 

Risk Assessment 

 

Reighton Gap Survey – Natural England Location: Reighton Sands Holiday Park, Ghyll Field, 60 The 

Willows, Reighton Gap, Filey YO14 9SH 

Completed by: Chris Tomsett 

Date Completed 03/02/2022 Job Reference: Reighton Gap – Feb 2022 
 

Hazard 
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High winds or rain 
affecting the capability of 
the SUA 

 

 
A 

Weather forecast checked prior to deployment. The flight may be delayed or cancelled at any time if the 
weather risks the capability of the SUA. 

Weather to be monitored at all times during flight with a view to landing should weather deteriorate. 

 
 
4 

 
 
1 

 
 
4 

 
 

 
 
 

 
 
 

 
 
 

Pilot Incapacitation A Follow IMSAFE mnemonic (Illness, medication, stress, alcohol, fatigue and eating). 

Crew to be appropriately dressed for weather conditions. 

Make all crew aware of existing relevant medical conditions. 

Brief observer/s on return to home procedures pre-flight in case there is pilot incapacitation and ensure 

controller has no additional inputs i.e. body lying on controller. 

4 1 4     

Airspace Incursion and 
Collision 

 
 
 

 A Check airspace in accordance with pre-flight survey and contact ATC if necessary. 

NOTAMS will be checked prior to flight for specific information relating to the deployment area. 

SUA will remain below 122m (400 ft) at all times unless permission is granted. 

Pilot or observer to monitor airspace for potential incursion pre and during flight. 

Descend or ascend as appropriate if height of crafts are similar. 

Notification of low flight booking cell due to near proximity to airspace used for high energy 
manoeuvres.  

 
 

5 

 
 

1 

 
 

5 

  
 

 
 

 
 

Ground Incursion P 
V 

Check ground in accordance with pre-flight survey and perform site survey (take note of people, animals 
and their likely responses). 

If practicable notify public near flight area of your intention to fly e.g. door knocking, verbal briefing and 

letter dropping. 

If present, brief observer on monitoring and alerting pilot to potential incursions.  

Erect signs near TOL (take off landing) if incursion is likely. 

Wear high visibility clothing if there is a benefit of doing so. 

Mark TOL area clearly to avoid incursion i.e. with cones. 

Avoid overflying public and visitors, hover a safe distance from the incursion, ideally downwind of the 
incursion.  

1 4 4     
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Identify a safe alternate landing location and proceed to land if safe to and is required. 

Make contact with site owners to notify them of intended flying times and locations so permanent 
residents can be informed of flights.  

Loss of control and/or 
data link / flyaway 

A Be able to fly in manual / ATTI mode should GPS signal be lost. 

Check site for presence of a HIRTA (High Intensity Radio Transmission Area). 

Check Kp index pre-flight. 4 and below is ideal. 

Configure antennae as per manufactures specifications pre-flight. 

Check for signal strength and interference in app pre and during flight. 

Monitor number of satellites tracked pre and during flight. 

Note battery level, flight speed and direction in the event of a flyaway. Use this information to estimate 
the maximum potential flight distance and who to contact. 

Have emergency contact information (e.g. ATC and police). 

4 1 4     

Power Loss A Maintain battery log to enable assessment of long-term battery health. 

Check battery status of SUA and ground control equipment pre and during flight. 

Take account of additional battery drain of flying into wind (strength and direction). 

Land before flight battery becomes critically low. Ideally land before dropping to 25%. 

Ongoing assessment of alternate safe landing sites that are close to the current position of the SUA 
should battery level drop rapidly.  

4 1 4     

Collision with Obstacles A Conduct pre-flight survey to identify potential hazards. Note any additional hazards during on site 

survey. 

Operate away from obstructions if possible. 

If possible, use spotters if close proximity to a structure is required. 

Note height of obstacles so that appropriate return to home height can be set. 

Ensure pre-programmed flight paths avoid any obstacles. 

If collision avoidance sensors are present on the SUA, configure them as appropriate. 

1 2 2     

Bird Incursion A Check for signs of protected bird presence pre and during flight to avoid overflying ground nesting birds. 

Observer to maintain watch for any large groups of birds approaching survey site. 

Follow procedures outlined in the SoGES UAV Bird Impact document around flying patterns. 

1 2 2     

 

Risk Assessment Sign off (By Pilot other than person completing) Name: Chris Tomsett  Date: 03/02/2022 

 

AT RISK (Column 2) SEVERITY (Column 4 and 8) PROBABILITY (Column 5 and 9) RISK RATING (Column 6, 8 and 10 

 Severity x Probability – 1 to 5 LOW 

E – Employees 1 No Injury, Property damage 1 Extremely Unlikely May be acceptable, review to see if risk can be further reduced. 

C – Clients 2 Minor Injury 2 Remotely Possible Severity x Probability – 6 to 12 MEDIUM 

V – Visitors 3 Reportable Injury 3 Will Possibly Occur Only proceed with specialist personnel / safety team 

P – Public 4 Major Injury / Single Fatality 4 Will Probably Occur Severity x Probability – 12 to 25 HIGH 

A – All 5 Multiple Fatalities 5 Almost Certain Task should not proceed 
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APPENDIX B – Software used in this project 

Universal Ground Control Station (UGCS) 

A fully featured commercial flight planning software which interfaces with DJI platforms. Available: 

https://www.ugcs.com/  

Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP) 

This free online service allows the post processing of RINEX data to calculate an accurate base 

station position: https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-

outils/ppp.php?locale=en  

PosPac UAV  

GNSS/INS direct georeferencing software from Applanix (used to merge GNSS/INS data for 

MicaSense): https://www.applanix.com/products/pospac-uav.htm  

Agisoft Metashape 

Used to create SfM models and orthomosaics from RGB and multispectral images. One of the best 

commercial SfM packages available: https://www.agisoft.com/features/professional-edition/  

A suitable alternative would be Pix4D.  

TOPODRONE post processing suite 

Image geotagging and TopoLidar point cloud generation from blended trajectory, motion and raw 

laser data. This software is commercial: https://topodrone.com/product/software/193/1279/  

LiDAR360 for Boresight calibration 

This is commercial software for boresight calibration: https://greenvalleyintl.com/LiDAR360/  

CloudCompare for point cloud viewing, cleaning and manipulation 

The latest stable version of CloudCompare can be downloaded from:  

http://www.danielgm.net/cc/release/  

 

 

 

 

 

 

 

 

 

https://www.ugcs.com/
https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php?locale=en
https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php?locale=en
https://www.applanix.com/products/pospac-uav.htm
https://www.agisoft.com/features/professional-edition/
https://topodrone.com/product/software/193/1279/
https://greenvalleyintl.com/LiDAR360/
http://www.danielgm.net/cc/release/
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Appendix C – Full scale data output images 

Mullion RGB Orthoimagery 
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Mullion SVM Object-Based Classification 
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Mullion SVM Pixel-Based Classification 
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Reighton RGB Orthomosaic 
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Reighton RGB Classification 
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Reighton RGB + CHM + Structure Classification 
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Reighton LiDAR CHM 
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Reighton RGB CHM 
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Appendix D – Example Metadata Documentation 

Mullion RGB Orthomosaic 
Overview 

Dataset Name Mullion RGB Orthomosaic 

Abstract Orthomosaic imagery acquired from UAV-based imagery over Mullion Cover 
SSSI for Natural England as part of their MCS mapping investigation work. 

Keywords UAV, Orthoimage, RGB 

Creator Chris Tomsett 

Date acquired 16-17/03/2022  

Collected by ES@S (Environmental Sensing @ University of Southampton) 

Website: https://esas.soton.ac.uk/  

E-mail: esas@soton.ac.uk  

Collected on behalf of Natural England 

Document author Chris Tomsett 

Document date 18/02/2025 

Overview Image 

 

https://esas.soton.ac.uk/
mailto:esas@soton.ac.uk
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 Data Acquisition 

UAS model DJI Inspire 2 

UAS sensor DJI X4S 

UAS flight height (metres) 80 m 

Image overlap (imagery) Unspecified 

Location (Approx) Lat 50° 0'38.61"N Lon 5°15'38.74"W 

Area (ha) 10 

Data Processing 

Positioning quality PPK 

CRS Horizontal BNG (27700) Vertical ODN (7405) 

GCPs Yes – 4 

CPs Yes – 3 

Software Agisoft Metashape 

Non-standard settings N/A 

GCP accuracy Mean - RMSE - 

CP accuracy Mean < 0.1 m RMSE - 

Data Format, Accessibility, and Intended Use 

Data format .jpg (georeferenced) 

Dataset size 29.6 MB 

Data license Permission must be sought from natural England before using this 
dataset. 

Access Access can be provided by Natural England 

Intended use To assist in the identification of MCS habitats, identifying 
suitability of UAS-based data collection. 

Known issues Shading in parts of image lead to reduced quality reconstruction 
and reductions in usability for these areas. 

Update frequency No planned updates to this imagery are scheduled. 

 

 


