

Phase 2 Ground Investigation

Boscawen Park, Malpas Road, Truro TR1 1SG

21 February 2024

Wheal Jane Consultancy

Old Mine Offices, Wheal Jane, Baldhu, Truro, Cornwall, TR3 6EE

01872 560200www.wheal-jane-consultancy.co.uk

consultancy@wheal-jane.co.uk

SI21757/PH2

DOCUMENT CONTROL SHEET

Client	Ward Williams Associates		
Project Title	Boscawen Park, Malpas Road, Truro TR1 1SG		
Document Title	Phase 2 Site Investigation		
Document No.	SI21757/PH2		

Date	Status	Revision	Prepared By	Approved By
21 February 2024	Final	-	TG/MV	MJC

Boscawen Park, Malpas Road, Truro TR1 1SG

Contents

Conte 1	Introd	uction	
	1.1	Instruction7	
	1.2	Scope and Objectives	
	1.3	Limitations7	
2		te	9
	2.1	Site Location and Layout	
	2.2	Surrounding area	
	2.3	Proposed Development9	
3	Site In 3.1	vestigation	10
	3.2	Site Works	
	3.3	Trial Pitting	
	3.4	Infiltration Testing11	
	3.5	Windowless Sample Boring11	
	3.6	CBR Testing (DCP Method)11	
	3.7	Geotechnical Sampling and Testing12	
	3.8	Chemical Sampling and Testing13	
4	Groun	nd Conditions	14
	4.1	General14	
	4.2	Made Ground (Topsoil)	
	4.3	Made Ground (Gravel)15	
	4.4	Made Ground (Landfill Waste)16	
	4.5	Alluvium	
	4.6	Groundwater16	
	4.7	Contamination Indications17	
5	Geote	echnical Assessment	18
	5.1	Introduction	
	5.2	3G Pitch Design	
	5.3	Foundation Options	
	5.4	Excavations and Earthworks	
	5.5	Drainage19	
	5.6	Roads and Hardstanding	
	5.7	Chemical Attack on Buried Concrete	
6	Conta	amination Assessment	20

9 10		rence lists	
8		ommendations	
7	Con	clusions	31
	6.3	Refined Conceptual Site Model28	
	6.2	Comparison with Generic Assessment Criteria (GACs) – Sports Hub and Café	
	6.1	Comparison with Generic Assessment Criteria (GACs) – 3G Pitch and Playing Fields	

FIGURES

- Figure 2.1: Site Location Plan
- Figure 2.2: Current Site Layout
- Figure 2.3: Proposed Development
- Figure 3.1: Exploratory Hole Location Plan

APPENDICES

- Appendix A: Exploratory Hole Logs
- Appendix B: Trial Pit Photographs
- Appendix C: Laboratory Test Results
- Appendix D: CLEA Statistical Analysis
- Appendix E: 3G pitch Ground Investigation Specifications

TABLES

- Table 3.1: Site Works
- Table 4.1: Ground Conditions Encountered
- Table 4.3:
 Standard Penetration Tests within Made Ground (Gravel)
- Table 4.4:
 Standard Penetration Tests within Made Ground (Landfill Waste)
- Table 4.6: Groundwater Encountered
- Table 6.1: Soil Chemical Laboratory Results 3G Pitch and Playing Fields
- Table 6.2:
 Heavy Metal Distribution Pathways
- Table 6.3: CLEA Software Inputs
- Table 6.4: Comparison of soil results against GAC's Sports Hub and Café
- Table 6.5:Refined Conceptual Model

Boscawen Park, Malpas Road, Truro TR1 1SG

EXECUTIVE SUMMARY

Objectives			
Wheal Jane Consultancy was commissioned by Ward Williams Associates to undertake an intrusive investigation on the site of a public park and commercial development.			
Site Investigation			
Previous Investigations	A Phase 1 environmental risk assessment was undertaken by Wheal Jane Consultancy on 7 th November 2023.		
Site Works	Samples were taken during an intrusive investigation from 8 machine excavated trial pits and 10 windowless sampling boreholes. 5 DCP (Dynamic Cone Penetrometer) tests were also conducted to obtain CBR values.		
Ground Conditions	Partial ground profiles were obtained, showing three distinct compositions of made ground (topsoil, gravel and landfill waste) overlying deposits of alluvium.		
Groundwater	Groundwater was encountered during the site investigation in all exploratory holes and trial pits between 0.40 – 0.50 m.		
Conclusions			

- The site was subject to a Phase 2 Ground Investigation to determine the level and risk of potential contamination, as well as the stability and geotechnical parameters of the underlying material.
- All tested contaminants, excluding Arsenic within the Public Park scenario, were recorded to occur in concentrations below the relevant guideline values.
- Additional bioaccessibility testing for Arsenic was conducted and used to produce a revised site-specific assessment criterion of 3710 mg/kg. The average concentration for Arsenic on site is 220 mg/kg, which significantly below the sitespecific assessment criterion, and is thus considered to present a Low Risk.
- Due to the type of fill material and the high organic matter content (up to 20%) encountered within the landfill deposits, the site is considered to have a high ground gas generation potential. The historic landfill site use therefore presents a Moderate Risk to the proposed development.
- It is considered that the site is likely to be suitable for the proposed development, once the recommendations within this report have been carried out.
- It is considered that conventional strip foundations will not be appropriate at the site, due to the extent and geotechnical properties of the Made Ground across the site.
- Based on the In-situ and laboratory testing, it is considered that a piled foundation solution is appropriate, with end-bearing piles driven through the Made Ground and Alluvium and socketed in the underlying Porthscatho Formation at an undetermined depth.
- SPT testing for the majority of exploratory boreholes did not reach the required 'N' values for refusal. This is due to the advancement of exploratory holes being abandoned on safety grounds on advice provided by a UXO specialist during the

site works. To determine bedrock depth and competency, additional testing would be required with appropriate equipment such as Nonmetallic (NM) Composite materials used for windowless sampler casing to advance the exploratory holes to greater depths, and downhole UXO scanning equipment.

Recommendations

- It is recommended that a course of ground gas monitoring is conducted in the areas of the proposed Sports Hub and Café (and any other enclosed structures).
- According to the guidance published in CIRIA 665, for a low sensitivity (commercial) development with a high gas generation potential, 12 monitoring visits over a period of 6 months may be considered appropriate.
- Pending the outcome from a course of gas monitoring, gas protection measures may be required for the proposed Sports Hub and Café building.
- It may be prudent to conduct further ground testing to determine the depth of bedrock on site with appropriate drilling and UXO equipment. Due to the potential presence of UXO on site any further investigation is not guaranteed to reach competent bedrock.
- As the site is situated in an area where greater than 30% of the properties are above the action level, it is recommended that full radon protective measures are installed on any proposed building.
- Suitable safety measures should be taken by those working on site to mitigate the risks associated with contaminated media including undertaking the appropriate risk assessments and ensuring all workers are wearing the correct PPE.
- Waste removed from site shall be disposed of at a suitable facility with the appropriate Waste Transfer Notices obtained for future records. Asbestos waste should be handled by a suitable waste contractor.

1 INTRODUCTION

1.1 Instruction

- 1.1.1 Wheal Jane Consultancy (WJC) was commissioned by Ward Williams Associates, to undertake a Phase 2 Ground Investigation at a site known as Boscawen Park, Malpas Road, Truro TR1 1SG.
- 1.1.2 This report has been prepared by Wheal Jane Consultancy solely for the benefit of the client. It shall not be relied upon or transferred to any third party without the prior written authorisation of WJC.

1.2 Scope and Objectives

- 1.2.1 The objective of this investigation is to quantify any land contamination based on in-situ data collected from the actual site which will then be interpreted and evaluated.
- 1.2.2 This investigation was developed to target the possible contamination related to the sites historic use and/or natural geology.
- 1.2.3 The objective of this investigation is also to evaluate the geotechnical parameters of the subsurface material in order to aid foundation design.
- 1.2.4 The conclusions and recommendations of this report are valid for a period of 12 months from the date of issue. Outside of this time frame the report will require reviewing by a suitably qualified geoenvironmental engineer / environmental scientist, to ensure that the report complies with any changes to industry standards, policies and/or guidelines.
- 1.2.5 It is recommended that a copy of this report be submitted to the local authority for checking, prior to commissioning any further work which may be required.
- 1.2.6 This assessment has been undertaken with guidance from BS10175:2011 and Environment Agency report CLR11, and as such represents a Phase 2 Ground Investigation.

1.3 Limitations

- 1.3.1 Field work consisted of discrete sampling across the site, to assess the character and degree of contamination. Conditions of the ground at locations not included within the investigation may be different from the tested locations.
- 1.3.2 This report considers site conditions at the time of the ground investigation, but ground conditions may change with time. If future work discovers ground conditions that vary

significantly from the findings available in this report, the conclusions should be reviewed in the context of the new information.

- 1.3.3 Findings were assessed in the context of standards and methodology current at the time of reporting.
- 1.3.4 The findings and conclusions in this report are based upon information derived from a variety of sources. WJC cannot accept liability for the accuracy or completeness of any information derived from third party sources.

2 THE SITE

2.1 Site Location and Layout

- 2.1.1 The site is located at Malpas Road approximately 1.4 km to the southeast of the city centre of Truro. The site is approximately centred on National Grid Reference SW 8345 4358.
- 2.1.2 The site is irregular in shape and covers an area of approximately 10.8 ha.
- 2.1.3 A site location plan (SLP) is contained in Figure 2.1, to the rear of the report.
- 2.1.4 The current site plan is contained in Figure 2.2, to the rear of the report.

2.2 Surrounding area

Direction	Land Use
North	Malpas road with residential dwellings beyond
East	Malpas road with trees and fields beyond
South	Truro river and Calenick Creek
West	Truro river and Newham Industrial Estate

2.3 Proposed Development

- 2.3.1 It is proposed to develop the site with improved play areas, performance spaces, a new 3G all-weather sports pitch, water play area, and a new sports hub/café.
- 2.3.2 An indicative proposed site plan is contained in Figure 2.3, to the rear of the report.

3 SITE INVESTIGATION

3.1 Phase 1 Findings

- 3.1.1 A Phase 1 Desk Study was undertaken by Wheal Jane Consultancy in November 2023. (Ref: 21757/PH1; dated 17/11/23).
- 3.1.2 The risks identified in the desk study were summarised within the Conceptual Site Model (CSM). It was concluded that an investigation would be required involving soil sampling and testing; focussing specifically on contaminants associated with historic landfill, including Metals, Total Petroleum Hydrocarbons (TPH), and Polycyclic Aromatic Hydrocarbons (PAH).

3.2 Site Works

- 3.2.1 An intrusive site investigation was conducted over two days from 30/11/23 to 01/12/23. The investigation was overseen by a geoenvironmental engineer from Wheal Jane Consultancy.
- 3.2.2 All borehole and trial pit locations were scanned at regular intervals by an appropriately qualified UXO specialist, with the holes further advanced or abandoned on their advice. As a result, many exploratory holes did not reach refusal and were terminated on the grounds of safety advice given by the UXO specialist.
- 3.2.3 The following table summarises the intrusive investigation techniques employed during the site investigation:

Exploratory Hole Type	Exploratory Hole	Hole Depths (mBGL)	Comments
Trial Pit	TP01 – TP08	1.00 – 2.80	Undertaken for site coverage.
Windowless Sample Borehole	WS01 – WS10	1.00 – 4.20	Undertaken for site coverage and to aid foundation design.
CBR Testing (DCP Method)	DCP01-05	0.81 – 0.96	Undertaken to aid 3G pitch design.

Table 3.1: Site Works

3.2.4 Exploratory hole logs are included as Appendix A.

3.2.5 A plan showing the location of the exploratory holes is provided as Figure 3.1.

3.3 Trial Pitting

- 3.3.1 8 nr. Trial Pits, designated TP01-TP08, were advanced to depths of between 1.00 2.80 mBGL using a JCB 3CX excavator on the 30/11/23 and 01/12/23. Representative soil samples were taken at regular intervals for geotechnical and environmental analysis, and logged on site by a suitably qualified Geoenvironmental Engineer.
- 3.3.2 The locations of all exploratory holes can be seen on the exploratory hole location plan, contained as Figure 3.1.
- 3.3.3 All trial pits were backfilled with arisings upon completion.
- 3.3.4 Trial Pit photographs are included as Appendix B.

3.4 Infiltration Testing

3.4.1 The execution of infiltration testing, in accordance with BRE 365, was initially planned within the Trial Pits. However, the presence of shallow groundwater and Made Ground across the site precluded the possibility of conducting this testing.

3.5 Windowless Sample Boring

- 3.5.1 10 nr. Windowless Sample Boreholes, designated WS01 WS10, were advanced to depths of between 1.00 4.20 mBGL using a Premier 110 Windowless Sampler on the 30/11/23 and 01/12/23. Standard Penetration Tests (SPTs) and representative soil samples were taken at regular intervals for geotechnical and environmental analysis and logged on site by a suitably qualified Geoenvironmental Engineer.
- 3.5.2 The locations of all exploratory holes can be seen on the exploratory hole location plan, contained as Figure 3.1.

3.6 CBR Testing (DCP Method)

- 3.6.1 CBR Testing using the Dynamic Cone Penetrometer method was employed across the site to calculate the California Bearing Ratio (CBR) of the strata.
- 3.6.2 5 nr. DCP tests, designated DCP01 DCP05, were advanced to depths of up to approximately 0.81 0.96 m BGL using a hand operated Dynamic Cone Penetrometer on 01/12/23.
- 3.6.3 The locations of all DCP tests can be seen on the exploratory hole location plan, contained as Figure 3.1.
- 3.6.4 CBR logs are contained as Appendix A.

3.7 Geotechnical Sampling and Testing

- 3.7.1 Samples were dispatched to an accredited geotechnical laboratory in order to classify the geotechnical properties of the soils. The following tests were scheduled:
 - Moisture Content
 - Atterberg Limits (4pt)
 - Particle Size Distribution
 - pH & Water-Soluble Sulphate
- 3.7.2 All testing was carried out in accordance with the procedures set out in BS EN ISO/IEC 17025:2005.
- 3.7.3 All samples were tested by a UKAS accredited laboratory.
- 3.7.4 The results are included as Appendix C.

3.8 Chemical Sampling and Testing

- 3.8.1 The proposed end use of the majority of site is for a public park, including a 3G sports pitch. For the eastern area of the site, approximately above the present grounds team yard, it is proposed to construct support facilities and commercial café. The subsequent data analysis will be conducted using these settings to test for levels of contaminants against generic assessment criteria.
- 3.8.2 The Phase 1 report highlighted Metals, Total Petroleum Hydrocarbons (TPH), and Polycyclic Aromatic Hydrocarbons (PAH) as the primary contaminants of concern, the sampling was designed to target the proposed areas of soft landscaping, as well as to provide site coverage. Such areas of soft landscaping provide the most exposure to potentially contaminated soils.
- 3.8.3 The ground investigation works also encountered a significant presence of Made Ground therefore further testing for asbestos were undertaken.
- 3.8.4 All retrieved samples were logged in accordance with BS5930;2015 and BS EN ISO 14689. Collection of media for environmental testing was obtained, stored in plastic tubs and glass jars and kept within a temperature controlled cool box before being dispatched for testing.
- 3.8.5 Samples were taken at varying depths and tested for potential contaminants including the following;
 - Heavy Metals (As, B, Cd, Cr, Cu, Hg, Pb, Ni, Se, Zn)
 - Sulphates
 - Polyaromatic Hydrocarbons
 - pH
 - Total Petroleum Hydrocarbons
 - Asbestos
 - VOCs and SVOCs
 - Arsenic Bioaccessibility
 - 3.8.1 All samples were tested by a UKAS and MCERT accredited laboratory.
 - 3.8.2 The results are included as Appendix C.

4 GROUND CONDITIONS

4.1 General

- 4.1.1 The BGS 1:50,000-scale bedrock geological map Sheet 352, Falmouth, of the area shows the site to be underlain by Made Ground across the entire footprint of the site. This Made Ground is anticipated to overlie superficial deposits of Marine and Estuarine Alluvium of unknown thickness.
- 4.1.2 The bedrock underlying the superficial deposits is anticipated to be the Portscatho Formation of Devonian Age, described as "Interbedded sandstone beds (up to 2 m) and slaty mudstone".
- 4.1.3 The following table represents a summary of the strata encountered beneath the site;

 Table 4.1: Ground Conditions

Strata	•	Depth Encountered (mBGL)		Brief Description & Comments
	From	То	Thickness (m)	Comments
Made Ground (Topsoil)	0.00	0.40	0.20	MADE GROUND. Grass over mid-brown, very clayey, sandy, gravelly TOPSOIL.
Made Ground (Gravel)	0.10	1.50	1.00	MADE GROUND. Light to mid-brown, very clayey, sandy, fine to coarse, angular to sub- rounded GRAVEL of mudstone, granite, and anthropogenic components including bricks and ballast.
Made Ground (Landfill Waste)	0.80	2.80	Unproven	Black, clayey, sandy, cobbly, fine to coarse, angular to sub-angular GRAVEL of mudstone and anthropogenic components including ceramics and glass
Superficial Alluvium	1.20	3.0	Unproven	Very soft, grey to black, slightly silty organic CLAY. Preserved roots and tree branches. Rich in organic material.

4.2 Made Ground (Topsoil)

- 4.2.1 Made Ground (Topsoil) was encountered in all grassed areas of the site to depths of between 0.0 0.40 mBGL.
- 4.2.2 The unit can be generally described as "MADE GROUND. Grass over mid-brown, very clayey, sandy, gravelly TOPSOIL. Gravel is angular to sub-rounded, fine to coarse, of mudstone and granite. Sand is fine to coarse. Common Rootlets."
- 4.2.3 No anthropogenic components were noted within the material. It is likely that this is imported fill material, used to create a level surface suitable for a playing field.
- 4.2.4 Standard Penetration Tests (SPTs) were not completed within the Made Ground (Topsoil).

4.3 Made Ground (Gravel)

- 4.3.1 Made Ground (Gravel) was encountered across the site to depths of between 0.10 1.50 mBGL.
- 4.3.2 The unit can be generally described as "MADE GROUND. Light to mid-brown, very clayey, sandy, angular to sub-rounded, fine to coarse GRAVEL of mudstone, granite, and anthropogenic components including bricks and ballast."
- 4.3.3 Occasional cobbles of mudstone, granite, and ballast were noted.
- 4.3.4 Anthropogenic components were noted within the material including bricks, ballast, and road planings.
- 4.3.5 Olfactory signs of hydrocarbons were noted from this stratum.
- 4.3.6 Standard Penetration Tests (SPTs) were not completed within the Made Ground (Gravel) and are summarised below.

Table 4.3: Standard Penetration Tests within Made Ground (Gravel)

Depth (mBGL) _		SPT 'N' Value	
	Min	Max	Average
2.20	3	19	11

4.4 Made Ground (Landfill Waste)

- 4.4.1 Made Ground (Landfill Waste) was encountered across the site to depths of between 0.80 2.80 mBGL.
- 4.4.2 The unit can be generally described as "MADE GROUND. Black clayey, sandy, angular to
- 4.4.3 sub-angular, fine to coarse GRAVEL of anthropogenic fill materials, including glass bottles, ceramics, and metal. Landfill waste."
- 4.4.4 Anthropogenic components were noted within the material including glass bottles, ceramics, clay water pipes, wires, bricks, and concrete blocks.
- 4.4.5 Olfactory signs of contamination were noted from this stratum.
- 4.4.6 Standard Penetration Tests (SPTs) were completed at regular intervals within the Made Ground (Landfill Waste) and are summarised below.

Table 4.4: Standard Penetration Tests within Made Ground (Landfill Waste)

Depth (mBGL)		SPT 'N' Value	
	Min	Max	Average
1.00	4	15	9.5

4.5 Alluvium

- 4.5.1 Material described as Alluvium was encountered in the northwestern area of the site in TP03 at 1.20 mBGL, and in WS01 at 1.90 mBGL.
- 4.5.2 The unit may be generally described as "Soft to very soft, grey to black, silty, sandy CLAY. Preserved roots and tree branches. Rich in organic material."
- 4.5.3 The material was subject to plasticity testing as shown to be a CLAY of high plasticity.
- 4.5.4 The Modified Plasticity Index (I'p) is defined by the NHBC Chapter 4.1, as the "Plasticity Index (Ip) of the soil multiplied by the percentage of Particles less than 425µm." In this instance the soil has been shown to be subject to Medium volume change potential.

4.6 Groundwater

4.6.1 Groundwater was encountered all exploratory holes at depths of between 0.40 – 1.50 mBGL.The depth groundwater was encountered in each hole is included below.

 Table 4.6: Groundwater Encountered

Exploratory Hole	Groundwater Level (mBGL)	Stratum
TP01	0.75	MADE GROUND (Gravel)

TP02	1.00	MADE GROUND (Landfill Waste)
TP03	1.30	Alluvium
TPO4	0.90	MADE GROUND (Gravel)
TP05	1.50	MADE GROUND (Gravel)
TP06	1.10	MADE GROUND (Landfill Waste)
TP07	0.40	MADE GROUND (Gravel)
TP08	1.30	MADE GROUND (Landfill Waste)
WS01	0.50	MADE GROUND (Gravel)
WS02	0.50	MADE GROUND (Gravel)
WS03	0.50	MADE GROUND (Gravel)
WS04	0.40	MADE GROUND (Gravel)
W\$05	0.40	MADE GROUND (Gravel)
WS06	1.40	MADE GROUND (Landfill Waste)
WS07	1.50	MADE GROUND (Landfill Waste)
WS08	1.30	MADE GROUND (Landfill Waste)
WS09	1.50	MADE GROUND (Landfill Waste)
W\$10	1.40	MADE GROUND (Landfill Waste)

4.7 Contamination Indications

4.7.1 Evidence of potential contamination includes the anthropogenic components mentioned in sections 4.2, 4.3, and 4.4, as well as the hydrocarbon odour described in TP02.

5 GEOTECHNICAL ASSESSMENT

5.1 Introduction

- 5.1.1 It is proposed to develop the site with improved play areas, performance spaces, a new 3G all-weather sports pitch, water play area, and a new sports hub/café.
- 5.1.2 At the time of writing this report, no definitive structural loads have been provided by the client.

5.2 3G Pitch Design

5.2.1 Geotechnical testing in accordance with the 3G pitch ground investigation specifications can be found in Appendix E. Specifically, testing completed on samples from TP01 – TP05, WS01 – WS05, and DCP01 – DCP05 are the results relevant to this aspect of the ground investigation and proposed development in this area of the site. See Figure 3.1 for a plan of the exploratory hole locations.

5.3 Foundation Options

- 5.3.1 Based on the ground conditions encountered it is considered that conventional strip foundations would not be suitable to support the proposed new structures.
- 5.3.2 Raft foundations are a solution often applied to soils with a low bearing capacity such as alluvial deposits, with the aim of spreading the foundation pressure over as large an area as possible.
- 5.3.3 Based on the ground conditions encountered in the absence of definitive loads and dimensions it is considered that a minimum of a 300 mm raft foundation, placed at approximately 2.00 mBGL, may be appropriate to support the new 3G sports pitch. The raft should be founded on granular infill placed and fully compacted in layers in accordance with the engineer's specification. It is recommended that the infill is not less than 50% of the foundation depth and should not exceed 1.25 m. It is recommended that the infill extends beyond the edge of the foundation by a distance equal to the natural angle of response of in the infill plus 0.50 m. Design of a raft foundation would be undertaken by the structural engineers.
- 5.3.4 Due to the presence of Made Ground across the site to a depth of at least 2.80 m a piled raft solution may be more suitable to limit the potential for differential settlement. This method is often employed where competent strata is not present until a depth >2.00 mBGL.
- 5.3.5 The possible presence of UXO may result in a piled foundation being unsuitable.
- 5.3.6 Any Made Ground should be excavated and replaced with suitably compacted granular material.

5.4 Excavations and Earthworks

- 5.4.1 Excavations to at least 1.20 m should be readily achievable with conventional soil excavating machinery. Excavations to this depth are likely to stand unsupported in the short term.
- 5.4.2 Any excavations to greater than 1.20 m which require personnel to enter should be supported.
- 5.4.3 Due to the fines content of the fill material, excavations should be covered during periods of inclement weather to prevent wetting and subsequent degradation.
- 5.4.4 It is considered that groundwater will be encountered in shallow excavations.

5.5 Drainage

5.5.1 Due to the encountered Made Ground across all areas of the site, and the presence of shallow groundwater, BRE 365 soakaway tests could not be completed on site.

5.6 Roads and Hardstanding

- 5.6.1 The structural design of a road or hardstanding is based on the strength of the sub-grade, which is assessed on the California Bearing Ratio (CBR) scale.
- 5.6.2 It is recommended that for formation prepared in the Made Ground (Gravel), a CBR value of9 % may be adopted for design purposes, derived from CBR (DCP) testing on-site.
- 5.6.3 Any soft or deleterious material should be excavated and replaced with suitable compacted granular fill.
- 5.6.4 All material within 450mm of the road surface should be non-frost-susceptible

5.7 Chemical Attack on Buried Concrete

- 5.7.1 Chemical testing indicates water soluble sulphate contents across the site of <10 to 1600 mg/l, with pH values of 5.5 7.7.
- 5.7.2 Based on the above results, the Design Sulphate Class varies across the site. The majority of the site may be classified as Design Sulphate Class DS-1, in the areas of TP01, TP02, TP04, WS03, WS04, WS05, WS06, WS07, WS08, WS09,
- 5.7.3 The areas surrounding TP03, TP05, and WS10, may be classified as DS-2.
- 5.7.4 The Aggressive Chemical Environment for Concrete (ACEC) class is based upon the pH and mobility of groundwater, as groundwater was encountered across the site mobile groundwater was considered. The results indicate that the soils on site may generally fall into class AC-1s (surrounding TP01, TP02, TP04, WS03, WS04, WS05, WS06, WS07, WS08).
- 5.7.5 The soils in the area of TP03, TP05, and WS10, may be classified as ACEC class AC-2.

6 CONTAMINATION ASSESSMENT

- 6.1 Comparison with Generic Assessment Criteria (GACs) 3G Pitch and Playing Fields
- 6.1.1 The laboratory results are contained as Appendix C.
- 6.1.2 Results from the environmental testing can be compared against Generic Assessment Criteria (GAC) to form the basis of a GQRA. The GAC's used are taken from the LQM/CIEH 'Suitable 4 Use Levels' publication. In the absence of a suitable S4UL value (such as Lead), reference has been made to DEFRA's Category 4 Screening Levels (C4SL) where deemed justifiable. Given the proposed land use for the sports and playing fields, the Public Open Space scenario has been chosen for the appropriate set of criteria. A comparison table can be found below.

 Table 6.1: Comparison of soil results against GAC's (Public Open Space, 6% organic matter; based on the average value recorded – all values in mg/kg unless stated)

Contaminant	GAC's: S4UL's – POS (unless stated)	Minimum	Maximum	Exceedances			
	Ν	Netals					
Arsenic	170	35	1800	4			
Boron	46000	0.5	9.6	0			
Cadmium	560	< 0.2	< 0.2	0			
Chromium (III)	33000	16	36	0			
Chromium (VI)	220	< 1.8	< 1.8	0			
Copper	44000	45	1100	0			
Lead	1300 (C4SL)	39	1100	0			
Mercury (inorganic)	240	< 0.3	2.5	0			
Nickel	800	22	358	0			
Selenium	1800	< 1.0	< 1.0	0			
Zinc	170000	100	1800	0			
	General						
Asbestos	N/A	Not	detected	N/A			
рН	N/A	5.6	7.7	N/A			

Organic Matter %	N/A	2.7	14	N/A
Sulphates (water soluble, g/l)	N/A	0.0278	1.6	N/A
Cyanide (total)	23 (USEPA)	< 1.0	3	0
Phenols	1300	< 1.0	< 1.0	0
		Drganics		
	Polycyclic Aromati	c Hydrocarbons (P	AH, 16)	
Naphthalene	3000	0.08	2.3	0
Acenaphthylene	30000	< 0.05	0.31	0
Acenaphthene	30000	< 0.05	0.48	0
Fluorene	20000	< 0.05	0.73	0
Phenanthrene	6300	0.12	1.6	0
Anthracene	150000	< 0.05	0.4	0
Fluoranthene	6400	0.17	2.5	0
Pyrene	15000	0.15	2.3	0
Benzo(a)anthracene	62	0.08	1.5	0
Chrysene	120	0.12	1.5	0
Benzo(b)fluoranthene	16	0.14	2.2	0
Benzo(k)fluoranthene	440	0.06	1.1	0
Benzo(a)pyrene	13	0.07	1.7	0
Indeno (123-cd) pyrene	180	< 0.05	1.2	0
Dibenzo(ah)anthracene	1.4	< 0.05	0.21	0
Benzo(ghi)perylene	1600	< 0.05	1.1	0
PAH (Total 16)	N/A	1.01	20	0
	Total Petroleur	n Hydrocarbons (TF	'H)	
Benzene	110	< 0.05	< 0.05	0
Toluene	100000	< 0.05	< 0.05	0
Ethylbenzene	27000	< 0.05	< 0.05	0
o-xylene	33000	< 0.05	< 0.05	0

Boscawen Park, Malpas Road, Truro TR1 1SG

m & p-xylene	31000	< 0.05	< 0.05	0
Methyl Tertiary Butyl Ether (MTBE) (EIC/AGS/CL:AIRE)	120	< 0.05	< 0.05	0
Aliphatic >C5-C6	180000	< 0.020	< 0.020	0
Aliphatic >C6-C8	320000	< 0.020	< 0.020	0
Aliphatic >C8-C10	21000	< 0.050	< 0.050	0
Aliphatic >C10-C12	24000	< 1.0	< 1.0	0
Aliphatic >C12-C16	26000	< 2.0	< 2.0	0
Aliphatic >C16-C21	490000	< 8.0	< 8.0	0
Aliphatic >C21-C35	490000	< 8.0	150	0
Aromatic >C5-C7	92000	< 0.010	<0.010	0
Aromatic >C7-C8	100000	< 0.010	< 0.010	0
Aromatic >C8-C10	9300	< 0.050	< 0.050	0
Aromatic >C10-C12	10000	< 1.0	< 1.0	0
Aromatic >C12-C16	10000	< 2.0	4.6	0
Aromatic >C16-C21	7800	< 10	25	0
Aromatic >C21-C35	7900	16	92	0

- 6.1.3 VOCs and SVOCs were also tested from TP05 at 2.00 mBGL, all of which were below their respective guideline concentrations.
- 6.1.4 Soil pH values ranged from 5.6 to 7.7 with an average of 6.6.
- 6.1.5 Soil Organic Matter (SOM) testing was undertaken on 6 no. samples. An average value of 7.4 % was calculated, resulting in a value of 6 % SOM being adopted.
- 6.1.6 No asbestos was recorded during testing.
- 6.1.7 Elevated levels of heavy metals were noted across the site, in particular Arsenic. Exceedances were within the MADE GROUND (Landfill), Tarmac, and Superficial Alluvium Strata. A maximum Arsenic level of 1800 mg/kg was recorded in TP02 at 1.00 m, within the MADE GROUND (Landfill) stratum, although this is considered to be anomalous. Typical exceedances ranged from 230 –

770 mg/kg, with an average concentration across the site of 220 mg/kg when the anomalous value is removed.

- 6.1.8 The average soil concentrations for arsenic were entered into the CLEA software. This enabled the ratio of Average Daily Exposure to each contaminant with the relevant Health Criteria Value to be determined. This corresponded with the exceedances reported above when the soil guideline values were used. Site specific data was also entered into the software to model the conditions in a representative manner. Several land use categories are available within CLEA, the most appropriate in this case is the Public Open Space scenario. Values for average soil pH and soil organic matter were also included (6.6, and 7.4 %, respectively).
- 6.1.9 The contaminant pathways for each of the substances were also determined using the CLEA software, and these were expressed as percentages. The distribution pathways varied, as shown in the table below;

Table 6.2: Distribution pathways for metals

	Direct Soil Ingestion	Consumption of Homegrown Produce	Dermal Contact
Arsenic	36.43 %	0.00 %	63.57 %

- 6.1.10 The above information is also contained as Appendix D.
- 6.1.11 The bioaccessibility of arsenic was tested on samples from TP02, TP03, TP05, and TP07, at depths of between 0.30 to 1.40 mBGL. This type of testing shows the extent to which ingested contaminants are likely to be absorbed by the body. The testing produced maximum bioaccessible fraction values of 1.7 % for arsenic. The CLEA Software (Environment Agency) was then used to produce new site-specific assessment criteria for arsenic in the soil. The site-specific parameters listed below were entered into the software based on the plans and original site investigation.
- 6.1.12 **Table 6.3**: CLEA Software Inputs

CLEA Inputs	
Land Use Setting	Public Open Space (Park C4SL)
Receptor	Female child
Building	No building
Soil Type	Sandy Loam

рН	6.60
Soil Organic Matter	7.40 %
Relative Bioaccessibility Arsenic	1.7 %

6.1.13 A revised site-specific assessment criterion of 3710 mg/kg for Arsenic in the soil was produced by the software. The average concentration for Arsenic on site is 220 mg/kg, which significantly below the site-specific assessment criterion.

6.2 Comparison with Generic Assessment Criteria (GACs) – Sports Hub and Café

- 6.2.1 The laboratory results are contained as Appendix C.
- 6.2.2 Results from the environmental testing can be compared against Generic Assessment Criteria (GAC) to form the basis of a GQRA. The GAC's used are taken from the LQM/CIEH 'Suitable 4 Use Levels' publication. In the absence of a suitable S4UL value (such as Lead), reference has been made to DEFRA's Category 4 Screening Levels (C4SL) where deemed justifiable. Given the proposed land use for the eastern area of the site to include a sport support facility and café, the Commercial scenario has been chosen for the appropriate set of criteria. A comparison table can be found below.

Table 6.4: Comparison of soil results against GAC's (Commercial, 6% organic matter; based on the
average value recorded – all values in mg/kg unless stated)

Contaminant	GAC's: S4UL's - Comm (unless stated)	Minimum	Maximum	Exceedances
	Μ	etals		
Arsenic	640	160	160	0
Boron	240000	0.7	3.3	0
Cadmium	190	< 0.2	< 0.2	0
Chromium (III)	8600	25	25	0
Chromium (VI)	33	< 1.8	< 1.8	0
Copper	68000	220	280	0
Lead	2300 (C4SL)	290	1900	0
Mercury (inorganic)	1100	0.6	6.9	0

Nickel	980	24	40	0				
Selenium	12000	< 1.0	< 1.0	0				
Zinc	730000	620	890	0				
General								
Asbestos	N/A	Not c	letected	N/A				
рН	N/A		7.5	N/A				
Organic Matter %	N/A		5.5	N/A				
Sulphates (water soluble, g/l)	N/A	C).488	N/A				
Cyanide (total)	23 (USEPA)	<	< 1.0	N/A				
Phenols	1300	<	< 1.0	N/A				
		Drganics						
	Polycyclic Aromati	c Hydrocarbons (F	РАН, 16)					
Naphthalene	1100	(0.54	0				
Acenaphthylene	100000	(0					
Acenaphthene	100000	0.08		0				
Fluorene	71000	(0.25	0				
Phenanthrene	23000		3.9	0				
Anthracene	540000	(0.52	0				
Fluoranthene	23000		5.6	0				
Pyrene	54000		4.4	0				
Benzo(a)anthracene	180		1.9	0				
Chrysene	350		2.4	0				
Benzo(b)fluoranthene	45		2.4	0				
Benzo(k)fluoranthene	1200		1.2	0				
Benzo(a)pyrene	36		1.9	0				
Indeno (123-cd) pyrene	510		1.1	0				
Dibenzo(ah)anthracene	3.6	<	0					
Benzo(ghi)perylene	4000		0					

PAH (Total 16)	N/A	27.5	0				
	Total Petroleum Hydrocarbons (TPH)						
Benzene	90	< 5.0	0				
Toluene	180000	< 5.0	0				
Ethylbenzene	27000	< 5.0	0				
o-xylene	33000	< 5.0	0				
m & p-xylene	30000	< 5.0	0				
Methyl Tertiary Butyl Ether (MTBE)	24000	< 5.0	0				
Aliphatic >C5-C6	12000	< 0.020	0				
Aliphatic >C6-C8	40000	< 0.020	0				
Aliphatic >C8-C10	11000	< 0.050	0				
Aliphatic >C10-C12	47000	< 1.0	0				
Aliphatic >C12-C16	90000	< 2.0	0				
Aliphatic >C16-C21	1800000	< 8.0	0				
Aliphatic >C21-C35	1800000	9.1	0				
Aromatic >C5-C7	86000	< 0.010	0				
Aromatic >C7-C8	180000	< 0.010	0				
Aromatic >C8-C10	17000	< 0.050	0				
Aromatic >C10-C12	34000	< 1.0	0				
Aromatic >C12-C16	38000	2.6	0				
Aromatic >C16-C21	28000	10	0				
Aromatic >C21-C35	28000	< 10	0				
Aromatic >C35-C44	28000	23	0				

- 6.2.3 Soil pH values in this area of the site were 7.5.
- 6.2.4 Soil Organic Matter (SOM) testing was undertaken on 1 no. samples, yielding a value of 5.5 %, resulting in a value of 6 % SOM being adopted.
- 6.2.5 No asbestos was recorded during testing.
- 6.2.6 All tested contaminants were recorded to occur in concentrations significantly below the relevant guideline values for commercial end uses.
- 6.2.7 The above information is also contained as Appendix C.

Refined Conceptual Site Model 6.3

 Table 6.5: Refined Conceptual Model

Pre	Preliminary Conceptual Model						
	Source(s)	Contaminant(s)	Pathway(s)	Receptor(s)	Probability	Consequence	Risk Assessment
	Natural Geology	Radon gas	Ingress into proposed buildings	Future site users	Low Likelihood	Medium	Moderate/Low Risk – The site is in a Higher probability radon area (10 to 30% of homes are estimated to be at or above the Action Level). However, as no dwellings are included in the proposed development, significant exposure to Radon for the proposed end users is considered unlikely. It may be prudent to install radon protective measures in any permanent enclosed structures on the site.
On Site		Heavy Metals	Dermal contact Soil and dust ingestion and inhalation	Future site users Site workers Site flora and fauna	Unlikely	Medium	Low Risk – One exceedance of Arsenic was recorded within natural ground of 350 mg/kg in TP03 at 1.40 mBGL. Bioaccessibility testing in this area yielded a maximum value of 1.7 %, resulting in a site-specific assessment criterion of 3710 mg/kg for Arsenic. The measured concentrations of Arsenic within the natural ground fall within the site specific assessment criterion.
	Historic Landfill and Potentially Infilled Land	Metals Total Petroleum Hydrocarbons (TPH)	Dermal contact Soil and dust ingestion and inhalation	Future site users Site Workers	Likely	Medium	Moderate Risk – The majority of the site has a history of being used as a landfill, with deposited waste including inert, industrial, commercial, and household waste. The
	Boscawen Park, Malpas Road, Truro TR1 1SG				Wh	eal Jane Consultancy	

Boscawen Park, Malpas Road, Truro TR1 1SG

	Polycyclic Aromatic Hydrocarbons (PAH) Ground Gas: Carbon Dioxide, Methane	Ground & surface waters Ingress into proposed buildings		intrusive site investigation encountered Made Ground consisting of anthropogenic materials including glass bottles, clay water pipes, bricks, concrete blocks, and organic matter contents of up to 20 %. All contaminants tested for were recorded to occur below the generic guideline concentrations or, in the case of arsenic as described above, were below the calculated site-specific assessment criterion when bioaccessibility was considered. Due to the incusion of household waste and high organic matter content, the site has a high ground gas generation potential. A contamination pathway from Ground Gas is considered to be unlikely for areas of the site where there are no proposed structures, however, there is a
				likely contamination pathway into the proposed Sports Hub and Café.
	Metals	Describeration		Low Risk - Significant Made Ground of
	Total Petroleum Hydrocarbons (TPH)	Dermal contact Soil and dust ingestion and inhalation	Future site users	varying types was encountered across the site in all exploratory holes.
Made Ground	Polycyclic Aromatic Hydrocarbons (PAH)	Ground & surface waters Ingress into proposed	Site Workers	In the Public Park area of the site, concentrations of Arsenic were recorded to exceed the relevant generic assessment
	Asbestos	buildings		criterion of 170 mg/kg within several horizons of Made Ground. Subsequent
Boscawen Park, Ma	llpas Road, Truro TR1 1SG		Wheal Jane Consultancy	

Phase 2 Ground Investigation

сy

Boscawen Park, Malpas Road, Truro TR1 1SG

bioaccessibility testing of samples from this area produced a maximum bioaccessible fraction of 1.7 %. Bioaccessibility data and site-specific information were used to create a new assessment criterion of 3710 mg/kg using the CLEA software. No samples were recorded to be in exceedance of the new site-specific assessment criterion.

In the area of the proposed support facility and café area, designated as Commercial for risk assessment purposes, no concentrations were recorded to occur in exceedance of the generic assessment criterion of 640 mg/kg.

No asbestos was detected within the Made Ground, and all other tested contaminants were within guideline concentrations.

7 CONCLUSIONS

- 7.1.1 The site was subject to a Phase 2 Ground Investigation to determine the level and risk of potential contamination, as well as the stability and geotechnical parameters of the underlying material.
- 7.1.2 All tested contaminants, excluding Arsenic within the Public Park scenario were recorded to occur in concentrations below the relevant guideline values.
- 7.1.3 Additional bioaccessibility testing for Arsenic was conducted and used to produce a revised site-specific assessment criterion of 3710 mg/kg. The average concentration for Arsenic on site is 220 mg/kg, which significantly below the site-specific assessment criterion, and is thus considered to present a Low Risk.
- 7.1.4 Due to the type of fill material and the high organic matter content (up to 20%) encountered within the landfill deposits, the site is considered to have a high ground gas generation potential. The historic landfill site use therefore presents a Moderate Risk to the proposed development.
- 7.1.5 It is considered that the site is likely to be suitable for the proposed development, once the recommendations within this report have been carried out.
- 7.1.6 It is considered that conventional strip foundations will not be appropriate at the site, due to the extent and geotechnical properties of the Made Ground across the site.
- 7.1.7 Based on the In-situ and laboratory testing, it is considered that a piled foundation solution is appropriate, with end-bearing piles driven through the Made Ground and Alluvium and socketed in the underlying Porthscatho Formation at an undetermined depth.
- 7.1.8 SPT testing for the majority of exploratory boreholes did not reach the required 'N' values for refusal. This is due to the advancement of exploratory holes being abandoned on safety grounds on advice provided by a UXO specialist during the site works. To determine bedrock depth and competency, additional testing would be required with appropriate equipment such as Nonmetallic (NM) Composite materials used for windowless sampler casing to advance the exploratory holes to greater depths, and downhole UXO scanning equipment.

8 **RECOMMENDATIONS**

- 8.1.1 The site was subject to a Phase 2 Ground Investigation to determine the level and risk of potential contamination and geotechnical aspects of the site.
- 8.1.2 It is recommended that a course of ground gas monitoring is conducted in the areas of the proposed Sports Hub and Café (and any other enclosed structures).
- 8.1.3 According to the guidance published in CIRIA 665, for a low sensitivity (commercial) development with a high gas generation potential, 12 monitoring visits over a period of 6 months may be considered appropriate.
- 8.1.4 Pending the outcome from a course of gas monitoring, gas protection measures may be required for the proposed Sports Hub and Café building.
- 8.1.5 It may be prudent to conduct further ground testing to determine the depth of bedrock on site with appropriate drilling and UXO equipment. Due to the potential presence of UXO on site any further investigation is not guaranteed to reach competent bedrock.
- 8.1.6 As the site is situated in an area where greater than 30% of the properties are above the action level, it is recommended that full radon protective measures are installed on any proposed building.
- 8.1.7 Suitable safety measures should be taken by those working on site to mitigate the risks associated with contaminated media including undertaking the appropriate risk assessments and ensuring all workers are wearing the correct PPE.
- 8.1.8 Waste removed from site shall be disposed of at a suitable facility with the appropriate Waste Transfer Notices obtained for future records. Asbestos waste should be handled by a suitable waste contractor.

9 **REFERENCE LIST**

- 9.1.1 BSI (2011) BS 10175:2011 Investigation of Potentially Contaminated Sites Code of Practice. London, British Standards Institution
- 9.1.2 BSI (2015) BS5930:2015. Code of Practice for Site Investigations. London, British Standards Institution
- 9.1.3 British Research Establishment (BRE) (2005) Special Digest 1 Concrete in Aggressive Ground. 3rd edn. Watford, BRE
- 9.1.4 Chartered Institute of Environmental Health (CIEH) and Contaminated Land: Applications in Real Environments (CL:AIRE) (2008) Guidance on Comparing Soil Contamination Data with a Critical Concentration. London, CIEH
- 9.1.5 CIRIA (2001) CIRIA C552 Contaminated land risk assessment: A guide to good practice. London, CIRIA
- 9.1.6 CIRIA (2007) CIRIA C665 Assessing Risks Posed by Hazardous Ground Gases to Buildings. London, CIRIA
- 9.1.7 Contaminated Land: Applications in Real Environments (CL:AIRE), Association of Geotechnical and Geo-environmental Specialists (AGS) and The Environmental Industries Commission (EIC) (2010) Soil Generic Assessment Criteria for Human Health Risk Assessment. London, CL:AIRE
- 9.1.8 Contaminated Land: Applications in Real Environments (CL:AIRE) (2012) A Pragmatic Approach to Ground Gas Risk Assessment. Research Bulletin 17
- 9.1.9 Contaminated Land: Applications in Real Environments (CL:AIRE) (2016) CAR SOIL: Control of Asbestos Regulations 2012. Interpretation for Managing and Working with Asbestos in Soil and Construction and Demolition Materials.
- 9.1.10 Environment Agency (2004) Contaminated Land Report 11 Model Procedures for the Management of Land Contamination. Bristol, Environment Agency
- 9.1.11 Environment Agency (2009) Updated Technical Background to the CLEA Model. Science Report SC050021/SR3. Bristol: Environment Agency
- 9.1.12 Environment Agency (2009) Human Health Toxicological Assessment of Contaminants in Soil. Science Report SC050021/SR2. Bristol: Environment Agency
- 9.1.13 Great Britain. Environmental Protection Act (1990). London, The Stationery Office
- 9.1.14 Great Britain. Water Act (2003) London, The Stationery Office
- 9.1.15 Great Britain. Environmental Permitting Regulations (2007). London, The Stationery Office
- 9.1.16 Great Britain. Environmental Damage (Prevention and Remediation) Regulations (2009). London, The Stationery Office

Phase 2 Ground Investigation

- 9.1.17 Great Britain. The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015. London, The Stationery Office
- 9.1.18 National House Building Council (NHBC), Environment Agency and Chartered Institute of Environmental Health (CIEH) (2008) Research & Development Publication 66: Guidance for the Safe Development of Housing on Land Affected by Contamination. Amersham, NHBC
- 9.1.19 Royal Institution of Chartered Surveyors (RICS) (2012) Japanese Knotweed and Residential Property. Coventry, RICS

10 NOTES

- 10.1.1 This report is concerned solely with the property, as defined by this report, or parts thereof examined.
- 10.1.2 The report should not be used in connection with adjacent properties.
- 10.1.3 In respect of site works, Wheal Jane Consultancy cannot accept any liabilities for any additional mine workings found outside the limits of any areas examined.
- 10.1.4 The information supplied by third parties which has been used in compiling this Phase 2 ground investigation report, is derived from a number of statutory and non-statutory sources. While every effort is made by the supplier to ensure accuracy, the supplier cannot guarantee the accuracy or completeness of such information or data, nor to identify all the factors that may be relevant.
- 10.1.5 The conclusions and recommendations relate to the type and extent of development outlined in this report for this specific property only and should not be taken as suitable for any other form or extent of development on this property without further consultation with Wheal Jane Consultancy.
- 10.1.6 This report is confidential to the client, the client's legal and professional advisors, and may not be reproduced or distributed without our permission other than to directly facilitate the sale or development of the property concerned.
- 10.1.7 We have no liability toward any person not party to commissioning this report.
- 10.1.8 Unless otherwise expressly stated, nothing in this report shall create or confer any rights or other benefits pursuant to the Contracts (Rights of Third Parties) Act 1999 in favour of any person other than the person commissioning this report.
- 10.1.9 This report is not an asbestos inspection that may fall within the control of Control of Asbestos Regulations 2006

FIGURES:

Title: Site Location Plan

Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG

Client: Ward Williams Associates

Report Title: Ground Investigation

Date: 21/02/2024 Ref: 21757

Figure:

Legend:
GEOTECHNICAL ENVIRONMENTAL MINING SERVICES
Title:
Title: Current Site Layout
Current Site Layout Project: Boscawen Park, Malpas Road, Truro,
Current Site Layout Project:
Current Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG
Current Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757
Current Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757 Client: Ward Williams Associates Date: 21/02/2024
Current Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757 Client: Ward Williams Associates Date: 21/02/2024 Scale: NTS
Current Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757 Client: Ward Williams Associates Date: 21/02/2024
Current Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757 Client: Ward Williams Associates Date: 21/02/2024 Scale: NTS Drawn by: WSP

N
Legend:
GEOTECHNICAL ENVIRONMENTAL & MINING SERVICES
Title:
Title:
Title: Proposed Site Layout
Proposed Site Layout
Proposed Site Layout
Proposed Site Layout Project: Boscawen Park, Malpas Road, Truro,
Proposed Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG
Proposed Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757
Proposed Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757 Client: Ward Williams Associates
Proposed Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757 Client:
Proposed Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757 Client: Ward Williams Associates Date: 21/02/2024
Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757 Client: Ward Williams Associates Date: 21/02/2024 Scale: NTS Drawn by: Mei Loci Revision: A
Proposed Site Layout Project: Boscawen Park, Malpas Road, Truro, Cornwall, TR1 1SG 21757 Client: Ward Williams Associates Date: 21/02/2024 Scale: NTS Drawn by: Mei Loci

APPENDIX A

Exploratory Hole Logs

	t & mining services					Boscawen Park, Truro)	Numb TP0
xcavation l lachine exc	Method avated trial pit	Dimens	ions	Ground	Level (mOD)	Client WWA		Job Numb 2175
		Locatio	n	Dates		Engineer		Sheet
		Во	scawen Park	30	0/11/2023	MJC		1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Legend
20-0.80	BS		Water strike(1) at 0.75m.		(0.10) (0.10) (0.70) (0.70) (0.40)	And E GROUND. Bla coarse, angular to sub granite, and anthropo and ballast. Sand is fii mudstone and granite	ht brown, very clayey, sandy, o-rounded GRAVEL of mudst genic components including ne to coarse. Occasional cot ck, clayey, sandy, cobbly, fine o-angular GRAVEL of mudst nents including terracotta an ib-rounded, of mudstone and	rounded, re to fine to one, bricks bbles of e to one and d glass.
					- - -			
······································			TP02			Remarks		
	троз	04] TP06	TP01			Backfilled with arisings Sidewalls moderately st Hole abandoned on adv Groundwater encounter	upon completion. table, with some spalling. <i>v</i> ice of UXO specialist. red at 0.75 m.	
		-	P05			Scale (approx)	Logged By	Figure No.
		and the second s						3

Wheal Jan Consultant	e Cy nt & mining services					Site Boscawen Park, Truro		Trial Pit Number TP02
Excavation I Machine exc	Method avated trial pit	Dimens	ions	Ground	Level (mOD)	Client WWA		Job Number 21757
		Locatio Bo	n scawen Park	Dates 30)/11/2023	Engineer WJC		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	C	Description	Legend Safe
0.20-0.80	BS ES ES		Water strike(1) at 1.00m.			sandy, gravelly TOPSOIL fine to coarse, of mudstor coarse. Common rootlets MADE GROUND. Light bit coarse, angular to sub-roo granite, and anthropogeni and ballast. Sand is fine to mudstone and granite.	cover medium brown, very clayey Gravel is angular to sub-rounde te and granite. Sand is fine to unded GRAVEL of mudstone, ic components including bricks o coarse. Occasional cobbles of clayey, sandy, cobbly, fine to gular GRAVEL of mudstone and ts including terracotta, cloth, and sub-rounded, of mudstone and arse. Notable oil staining, and	
	TPO3	ТРОб				Remarks Significant visual and olfact Backfilled with arisings upo Sidewalls moderately stable Hole abandoned on advice Groundwater encountered a	n completion. e, with some spalling. of UXO specialist.	
	N Bart	Т	P05		5	Scale (approx)		jure No.
	ALL			ALCONO.		1:20	TG	21757.TP02

Wheal Jar Consultan	10 CU ent & mining services				Site Boscawen Park, Truro		Trial F Numb TP0	er		
Excavation Machine exc	Method cavated trial pit	Dimensi	ons	Ground	Level (mOD)) Client WWA		Job Numb 2175		
		Location Bos	n scawen Park	Dates 30/11/2023		Engineer WJC			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Legend	Wator	
0.10 0.20-0.80 0.80 1.20-1.50 1.40	ES BS ES ES		Water strike(1) at 1.30m.		(0.20) (0.20) (1.00) (1.00) (0.30)	sandy, gravelly TOPSOIL fine to coarse, of mudsto coarse. Common rootlets MADE GROUND. Light to coarse, angular to sub-ro- granite, and anthropoger and ballast. Sand is fine mudstone and granite.	over medium brown, very clayey, Gravel is angular to sub-rounded, ne and granite. Sand is fine to bunded GRAVEL of mudstone, nic components including bricks to coarse. Occasional cobbles of slightly silty organic CLAY. branches. Rich in organic materia			
	TP03	ТРО6	TP02 TP01 TP08		-	Remarks Backfilled with arisings upo Sidewalls were stable, with Hole complete at natural g Groundwater encountered	on completion. n some minor spalling. round. at 1.30 m.			
	No. C	T	P05		s	Scale (approx)		re No.		
		A DA	and the second s	ARCA.		1:20	TG 2	1757.TP0	~	

Wheal Jar Consultan				Site Boscawen Park, Truro		Trial Pit Number TP04		
Excavation Machine exc	Method cavated trial pit	Dimens	sions	Ground	Level (mOD	Client WWA		Job Number 21757
		Locatio Bo	on oscawen Park	Dates 30)/11/2023	Engineer WJC		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level Depth (mOD) (m) (Thickness)		D	escription	Legend Safe
0.30-0.50	BS ES ES	(m)	Water strike(1) at 0.90m.		(Inickness - (0.30) - (0.20) - (0.20) - (0.20) - (0.20) - (0.20) - (0.30) - (0	MADE GROUND. Grass of sandy, gravelly TOPSOIL fine to coarse, of mudston coarse. Common rootlets. MADE GROUND. Light br coarse, angular to sub-roo granite, and anthropogeni and ballast. Sand is fine to mudstone and granite. MADE GROUND. Tarmac MADE GROUND. Brown,	own, very clayey, sandy, fine Inded GRAVEL of mudstone c components including brick o coarse. Occasional cobbles very clayey, sandy, fine to co RAVEL of granite and ballas	yey, nded, o to , s s of parse,
	TP03	04 TP06				Remarks Backfilled with arisings upon Sidewalls were unstable, wi Hole abandoned on advice poor sidewall stability. Groundwater encountered a	n completion. th significant spalling of the o of UXO specialist, groundwa at 0.90 m.	deeper strata. ter incursion, and
	1 22				Produc	1:20 ed by the GEOtechnical DAta	TG	21757.TP04

Wheal Jan Consultan					Site Boscawen Park, Truro		Trial Numb TP(ber	
Excavation Machine exc	Method avated trial pit	Dimens	ions	Ground	Level (mOD)	Client WWA		Job Numi 217	
		Location Bo	n scawen Park	Dates 30)/11/2023	Engineer WJC		Shee 1/	
Depth (m)	Depth (m) Sample / Tests		Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Legen	Vater Vater
					 (0.30) 	MADE GROUND. Grass sandy, gravelly TOPSOII fine to coarse, of mudsto coarse. Common rootlets	over medium brown, very clay Gravel is angular to sub-roun ne and granite. Sand is fine to S.	ey, ded,	
0.30	ES				- 0.30 	coarse, angular to sub-ro granite, and anthropoger	orown, very clayey, sandy, fine bunded GRAVEL of mudstone, nic components including brick to coarse. Occasional cobbles	5 💥	
1.20	ES		Water strike(1) at 1.50m.		- (1.50) 				⊻
2.00	ES				- 1.80 	sub-angular fine to coal	clayey, sandy, angular to rse GRAVEL of anthropogenic s bottles, ceramics, and metal.	Fill	
					- 2.80	Abandoned at 2.80m			
	TP03	ТРО6				Groundwater encountered	on completion. vith significant spalling of the do oundwater incursion, and poor at 1.50 m. ctory signs of contamination.	eeper strata. sidewall stabi	ility.
		Т	P05			Scale (approx)	Logged By	Figure No.	
	A ATEL	6 30 2		100		1:20	TG	21757.TP0	25

Wheal Jar Consultan	IC CU nt & mining services					Site Boscawen Park, Truro	,	Trial Pit Number TP06
Excavation Machine exc	Method avated trial pit	Dimens	ions	Ground Level (mOD)		Client WWA		Job Number 21757
		Locatio Bo	n scawen Park	Dates 30	/11/2023	Engineer WJC		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Legend
0.20	ES				(0.40) (0.40) (0.40)	sandy, gravelly TOPS0 fine to coarse, of mud- coarse. Common root	nt brown, very clayey, sandy, fin	inded, to
0.70	ES				(0.50)	granite, and anthropod	 rounded GŘAVĚL of mudšton jenic components including bric ne to coarse. Occasional cobble . 	cks 🗰
			Water strike(1) at 1.10m.		0.90 (0.60)	sub-angular, fine to co	ck clayey, sandy, angular to arse GRAVEL of anthropogenic ass bottles, ceramics, and meta	c fill al.
1.30	ES					Abandoned at 1.50m		
100.42								
	троз	04 TP06	TP02		-	Remarks Backfilled with arisings u Sidewalls were unstable Hole abandoned due to Groundwater encounter Significant visual and of	upon completion. e, with significant spalling of the groundwater incursion, and por ed at 1.1 m. factory signs of contamination.	deeper strata. or sidewall stability.
			P05		s	Scale (approx)	Logged By	Figure No.
	1 22			總		1:20	TG	21757.TP05

Wheal Jar Consultan	CU ent & mining services					Site Boscawen Park, Truro		Trial Pit Number TP07
Excavation Machine exc	Method cavated trial pit	Dimens	ions	Ground	Level (mOD)	Client WWA		Job Number 21757
		Locatio Bo	n scawen Park	Dates 01	/12/2023	Engineer WJC		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Legend
0.10	ES				(0.15) 0.15	sandy, gravelly TOPSC	ss over medium brown, very claye DIL Gravel is angular to sub-round tone and granite. Sand is fine to ets.	ey, led,
).40	ES		Water strike(1) at 0.40m.		(0.45)	coarse, angular to sub granite, and anthropog	t brown, very clayey, sandy, fine t -rounded GRAVEL of mudstone, lenic components including bricks le to coarse. Occasional cobbles	
).70	ES				- 0.60 - (0.30)	MADE GROUND. Tarm	nac.	
					0.90 - 0.50)	sub-angular, fine to coa	ck clayey, sandy, angular to arse GRAVEL of anthropogenic fi ass bottles, ceramics, and metal.	1
1.40	ES				 1.40 	Abandoned at 1.40m		
					- - - - - -			
					- 			
					- - - - -			
and the second s			TP02	18	-	Remarks		
	TP03		TP01			Hole abandoned due to	actory signs of contamination. ed at 0.40 m. groundwater incursion, and poor s , with significant spalling of the de pon completion.	sidewall stability eper strata.
		TP06			5	Scale (approx)	Logged By F	igure No.
	A State of the	The		ALC: NO				

Consultan	1e CU ent & mining services				Site Boscawen Park, Truro	Trial Pit Number TP08		
Excavation Machine exc	Method avated trial pit	Dimens	ions	Ground	Level (mOD)	Client WWA		Job Number 21757
		Locatio Bo	n scawen Park	Dates 01	/12/2023	Engineer WJC		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Legend S
0.10 0.40 0.70 1.40	ES ES		Water strike(1) at 1.30m.		(0.20) (0.20) (0.70) (0.70) (0.60)	sandy, gravelly TOPSOI fine to coarse, of mudsto coarse. Common rootled MADE GROUND. Light coarse, angular to sub-r granite, and anthropoge and ballast. Sand is fine mudstone and granite.	s over medium brown, ver L Gravel is angular to sub one and granite. Sand is fi is. brown, very clayey, sandy ounded GRAVEL of muds inc components including to coarse. Occasional co clayey, sandy, angular to rse GRAVEL of anthropog k, concrete blocks, terracc	-rounded, ine to (, fine to bricks bbles of enic fill
	TPO3	004	TP02			Remarks Significant visual and olfa Groundwater encounterec Hole abandoned due to g Sidewalls were unstable, ' Backfilled with arisings up	ctory signs of contaminati d at 1.30 m. roundwater incursion, and with significant spalling of ion completion.	on. poor sidewall stability. the deeper strata.
	E	Т	P05	-		Scale (approx)	Logged By	Figure No.

Windowless sample borehole until SPT N=50, hole collapse and/or UXO-safe depth reached. Location Dates 30/11/2023 WWA Multiple Location Boscawen Park Dates 30/11/2023 Engineer WJC Supple		Interview Dimensions vation Method Dimensions owless sample borehole SPT N=50, hole collapse or UXO-safe depth					Boscawen Park, Truro	Num WS	
Location Date 30/11/2023 Engineer WJC Second Park Second Park Depth Sample / Tests Veter (m) Field Records Uo00 (m) Depth (m) Description Lecelon 220-1.00 BS BS Vater strike(1) at 0.50m. - (0.20) MADE GROUND, Black, clayey, sandy, cobby, fine to coarse. MADE GROUND, Black, clayey, sandy, cobby, fine to coarse. 2.20-1.00 BS Vater strike(1) at 0.50m. - (0.20) MADE GROUND, Black, clayey, sandy, cobby, fine to coarse. 1.00-1.45 SPT N=4 1,1/1,1,1 - (0.20) MADE GROUND, Black, clayey, sandy, cobby, fine to coarse. 1.00-1.45 SPT N=4 1,1/1,1,1 - (0.20) - (0.20) 2.205 ES ES - (0.70) - (0.70)	Vindowless	sample borehole 50, hole collapse	Dimens	ions	Ground	Level (mOD)		Job Num 217	
2.20-1.00 BS Water strike(1) at 0.50m. MADE GROUND, Grass over medium brown, very gravely, sightly sandy TOPSOL. Sand is fine to coarse. 1.50 BS Water strike(1) at 0.50m. (0.20) 1.00-1.45 SPT N=4 1,1/1,1,1,1 1.00-1.45 SPT N=4 1.01-1.10 1.00 1.00-1.45 SPT N=4 1.00-1.45 SPT N=4 1.00-1.45 SPT N=4 1.00-1.45 SPT N=4 1.01-1.10 1.00 1.00-1.45 SPT N=4	and/or UXO-:	safe depth			30/11/2023		-		et /1
2.20-1.00 BS Water strike(1) at 0.50m. MADE GROUND Grass over medium brown, very gravely, ighthy sandy TOPSOL. Sand is fine to coarse. 0.20-1.00 BS Water strike(1) at 0.50m. (0.20) 1.00-1.45 SPT N=4 1,1/1,1,1 1.00-1.45 SPT N=4 1,1/1,1,1 2.95 ES Interpretation of the sub-angular of SRWEL of mudstone and anthropogenic brick. Sand is fine to coarse. 2.95 ES Interpretation of the sub-angular of SRWEL of mudstone and anthropogenic brick. Sand is fine to coarse.	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	d
120-1.00 BS Water strike(1) at 0.50m. Image: CROUND. Find, light crown, sandy, very gravely, or of mudstore and anthropogenic brick. Sand is fine to coarse. 1.00-1.45 SPT N=4 1,1/1,1,1,1 Image: CROUND. Black, clayey, sandy, cobbly, fine to coarse. 1.00-1.45 SPT N=4 1,1/1,1,1,1 Image: CROUND. Black, clayey, sandy, cobbly, fine to coarse. 1.00-1.45 SPT N=4 1,1/1,1,1,1 Image: CROUND. Black, clayey, sandy, cobbly, fine to coarse. 1.00-1.45 SPT N=4 1,1/1,1,1,1 Image: CROUND. Black, clayey, sandy, cobbly, fine to coarse. 1.00-1.45 SPT N=4 1,1/1,1,1,1 1.10 SPT N=4 </td <td></td> <td></td> <td>(,</td> <td></td> <td></td> <td></td> <td>MADE GROUND. Grass over medium brown, very clayey, slightly sandy TOPSOIL. Sand is fine to coarse.</td> <td></td> <td></td>			(,				MADE GROUND. Grass over medium brown, very clayey, slightly sandy TOPSOIL. Sand is fine to coarse.		
.00-1.45 SPT N=4 1.1/1.1.1.1 1.1/1.1.1.1 1.0 1.00 1.20 1.20 1.20 1.20 1.2	.20-1.00	BS				0.20	MADE GROUND. Firm, light brown, sandy, very gravelly, CLAY. Gravel is fine to coarse, sub-angular to sub-rounded, of mudstone and anthropogenic brick. Sand is fine to coarse.		
.00-1.45 SP1 N=4 1,1/1,1,1 MADE GROUND. Black, category, sandiar to sub-angular GRAVEL of mudstone and granite. 1.20 (0.20) Constrained and granite. 1.20 (0.70)	.50	BS		Water strike(1) at 0.50m.		 (0.80) 			<u>-</u>
.95 ES	.00-1.45	SPT N=4		1,1/1,1,1,1		(0.20)	anthropogenic components including terracotta and glass. Cobbles angular to sub-rounded, of mudstone and granite. Sand is fine to coarse.		
2.95 ES 3.00							Soft, dark brown, sandy CLAY. Sand is fine to coarse. Organic rich.	N/2N 	
3.00						(1.10)			
	2.95	ES					Complete at 3.00m		
						- - - - - - - - - - -			
Remarks	Remarks					- 	Scale	Logo	16(
ackfilled with arisings upon completion. Iole abandoned due to collapse. froundwater encountered at 0.50 m.	ackfilled wit	th arisings upon com ned due to collapse. r encountered at 0.5	npletion. 0 m.						
1:20 Figure No.								SLV	V

Wheal Jan Consultan	ie Cu					Site		Number	
	nt & mining services					Boscawen Park, Truro		WS02	
Excavation		Dimens	ions	Ground	Level (mOD)			Job Number	
until SPT N= and/or UXO-	sample borehole 50, hole collapse safe depth					WWA		21757	
reached.	,	Locatio		Dates 30	/11/2023	Engineer		Sheet	
			scawen Park		1	WJC		1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend S	*****
0.20-0.90	BS SPT N=11		Water strike(1) at 0.50m.			MADE GROUND. Grass over medium brown, ver slightly sandy TOPSOIL. Sand is fine to coarse. MADE GROUND. Firm, light brown, very clayey, s to coarse, sub-angular to sub-rounded GRAVEL of mudstone and anthropogenic components. Sand coarse. Complete at 1.00m			1
Refusal on M	r encountered at 0.50 lade Ground horizor th arisings upon corr	1.					Scale (approx) 1:20 Figure N 21757	Logged By SLW Io. 7.WS01	_

Wheal Jan Consultance Environmen	CU t & mining services					Site Boscawen Park, Truro	Numb WS(
Excavation I Windowless until SPT N=	Method sample borehole 50, hole collapse	Dimens	ions	Ground	Level (mOD)	Client WWA	Job Numb 2175	
and/or UXO-s reached.	safe depth	Locatio Bo	n oscawen Park	Dates 30)/11/2023	Engineer WJC	Sheet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	ł
0.20-1.50	BS		Water strike(1) at 0.50m.		(0.20) 0.20 	MADE GROUND. Grass over medium brown, very clayey, slightly sandy TOPSOIL. Sand is fine to coarse. MADE GROUND. Firm, light brown, very clayey, sandy, fine to coarse, sub-angular to sub-rounded GRAVEL of mudstone and anthropogenic components. Sand is fine to coarse.		2
1.00-1.42	SPT 1*/118 N=2		1,0/1,0,1,0		- (1.30) - (1.30) 	Poor recovery, continuous collapse between 2.00 - 3.00 mBGL.		
2.00-2.45	SPT N=2		1,0/1,0,1,0		- (1.50)			
2.90	ES				- 3.00	Complete at 4.00m		_
Remarks Groundwater Hole advance Backfilled wit Hole complet	encountered at 0.50 ed with continuous 5 h arisings upon com ie at UXO-safe depti	0 m. SPT betwee upletion. h.	een 2.00 - 4.00 m.			Scale (approx) 1:20	Logge By SLW	
						Figure 2175	No. 57.WS03	

_) Client		
Excavation I Vindowless Intil SPT N≕	sample borehole 50. hole collapse	Dimens	ions	Ground	Level (mOD)	Client WWA	Job Numb 2175	
nd/or UXO- eached.	safe depth	Locatio	n	Dates)/11/2023	Engineer	Sheet	
		Bo	scawen Park	30)/11/2023	wjc	1/*	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
					(0.20)	MADE GROUND. Grass over medium brown, very clayey, slightly sandy TOPSOIL. Sand is fine to coarse.		
.20-1.00	BS				- 0.20	MADE GROUND. Firm, light brown, very clayey, sandy, fine to coarse, sub-angular to sub-rounded GRAVEL of mudstone and anthropogenic components. Sand is fine to		
			Water strike(1) at 0.40m.		- -	coarse.		
					(0.80)			
					-			
.00-1.45	SPT N=6		1,1/1,1,2,2		- 1.00	Poor recovery.		
					-			
					-			
					- - -			
2.00-2.45	SPT N=2		1,0/1,0,1,0		(2.00) 			
2.30-2.75			0.0/0.0.0		- - -			
	SPT N=0		0,0/0,0,0,0		-			
50	ES				-			
					-			
.00-3.45	SPT N=0		0,0/0,0,0,0					
					-	Complete at 3.00m		
					-			
					- - -			
					 - 			
Remarks roundwater	encountered at 0.4	0 m.			<u> </u>	Scale (approx)	Logg By	
ackfilled wit	encountered at 0.4 th arisings upon con te at UXO-safe dept	npletion.				(app.ox)		

Wheal Jan Consultance Environmen	CU t.& mining services					Site Boscawen Park, Truro	Numbe WS0
until SPT N=	sample borehole 50, hole collapse	Dimens	ions	Ground	Level (mOD)	Client WWA	Job Numb 2175
and/or UXO-s eached.	safe depth	Locatio Bo	n scawen Park	Dates 30)/11/2023	Engineer WJC	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.10	ES				 (0.30)	MADE GROUND. Grass over medium brown, very clayey, slightly sandy TOPSOIL. Sand is fine to coarse.	
.30-0.70	BS		Water strike(1) at 0.40m.		- 0.30 	MADE GROUND. Firm, light brown, very clayey, sandy, fine to coarse, sub-angular to sub-rounded GRAVEL of mudstone and anthropogenic components. Sand is fine to coarse.	
.80	ES				- 0.70 - (0.30)	MADE GROUND. Dark grey, sandy, fine to coarse, angular to sub-angular GRAVEL of granite and anthropogenic brick. Appears to be disused compacted sub-base.	
1.00-1.45 SPT N=15			6,6/6,3,3,3		- 1.00 	MADE GROUND. Black, very clayey, sandy, fine to coarse, sub-angular to sub-rounded GRAVEL of mudstone, plastics, and glass. Landfill Waste	
.50-1.95	1.95 SPT N=2 1,0/1,0,1,0			 (1.00) 			
.90 2.00-2.45	ES SPT N=2		1,0/1,0,1,0		 2.00	Complete at 2.00m	
					 - - - - -		
					- - - -		
					- - - -		
					- - - -		
Pomarka					- - - -		
Remarks lole complet ackfilled wit	e at UXO-safe dept h arisings upon com encountered at 0.4	h. pletion. 0 m				Scale (approx)	Logge By
nounuwaler	encountered at 0.4	U III.				1:20 Figure	SLW No. 57.WS05

Wheal Jan Consultan	ent & mining services			_		Boscawen Park, Truro	WS0	
until SPT N=	sample borehole 50. hole collapse	Dimens	ions	Ground	Level (mOD)	Client WWA	Job Numbo 2175	
and/or UXO- eached.	safe depth	Locatio Bo	n scawen Park	Dates 01	1/12/2023	Engineer WJC	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
0.30-1.20	BS					MADE GROUND. Mid-brown, very clayey, sandy, angular to subangular, fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.		
0.50 ES					- (1.20) - (1.20) 			
			Water strike(1) at 1.40m.		- 1.20 - (1.00)	MADE GROUND. Mid brownish-grey, very clayey, sandy, angular to subangular, fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.		
2.20-2.65	SPT N=4		1,1/1,1,1,1		2.20 	MADE GROUND. Greyish beige very clayey, sandy, angular to subangular fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.		
2.90	ES SPT N=4		1,1/1,1,1,1		- 3.20 - 3.20	Complete at 3.20m		
Remarks	ated to 1.2 m due to r encountered at 1.4	risk of ser	vices.		-	Scale (approx)	Logge By	
∂roundwate 3ackfilled wi Hole comple	r encountered at 1.4 th arisings upon con te at UXO-safe dept	0 m. pletion. h, and due	e to hole collapse.			1:20	MV	
		,				Figure 1		

Vheal Jan	CU rt & mining services					Site Boscawen Park, Truro	Number WS07
Excavation I Vindowless Intil SPT N=	Method sample borehole 50, hole collapse	Dimens	ions	Ground	Level (mOD)	Client WWA	Job Number 21757
and/or UXO-s eached.	safe depth	Locatio Bo	n scawen Park	Dates 01	/12/2023	Engineer WJC	Sheet
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
).30	ES	(m)			(Inickness) 	MADE GROUND. Mid-brown, very clayey, sandy, angular to subangular, fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.	
0.60	ES				(1.20)		
1.50-3.20 BS				- 1. - 1. 		MADE GROUND. Mid brownish-grey, very clayey, sandy, angular to subangular, fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.	
.50-3.20	BS		Water strike(1) at 1.50m.		(1.00) (1.00) 		
2.20-2.65	SPT N=4		1,1/1,1,1,1		2.20 	MADE GROUND. Greyish beige very clayey, sandy, angular to subangular fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.	
					(1.00)		
3.20-3.65	SPT N=14		6,5/5,4,4,1		3.20 	MADE GROUND. Mid grey, very clayey, sandy, angular to subangular fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.	
					(1.00) 		
Remarks land excava Groundwater	ated to 1.2 m due to encountered at 1.5	risk of ser 0 m.	vices.			Scale (approx)	Logged By
Backfilled wit	th arisings upon com te at UXO-safe depti	pletion. n.				1:20	MV
						Figure I	No. 57.WS07

Wheal Jan Consultan					Site Boscawen Park, Truro		Numbe		
Excavation	Method	Dimens	ions	Ground	Level (mOD)	Client		WS0)7
	sample borehole 50, hole collapse safe depth	Dimens		Cround		WWA		Numbe 21757	
and/or UXO- reached.	safe depth	Locatio	n	Dates	/12/2023	Engineer		Sheet	
	1		scawen Park			WJC		2/2	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
4.20-4.65	SPT N=8		4,4/4,1,1,2			Complete at 4.20m			
Remarks Hand excava	ated to 1.2 m due to r encountered at 1.5	risk of ser	vices.		- 		Scale (approx)	Logge By	d
Backfilled wi Hole comple	r encountered at 1.5 th arisings upon con te at UXO-safe dept	npletion. h.					1:20	MV	
							Figure N		
							21757	7.WS07	

Wheal Jan Consultan	ICU CU Int & mining services					Site Boscawen Park, Truro	Numb	
Excavation Windowless until SPT N=	sample borehole 50, hole collapse	Dimens	ions	Ground	Level (mOD)	Client WWA	Job Numb 2175	
and/or UXO- reached.	safe depth	Locatio Bo	n scawen Park	Dates 01	1/12/2023	Engineer WJC	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Motor
0.15	ES					MADE GROUND. Mid-brown, very clayey, sandy, angular to subangular, fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.		XXXXXXXXXXX
0.40	ES				- (1.20) - (1.20) 			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			Water strike(1) at 1.30m.		- 1.20 - 1.20	MADE GROUND. Greyish beige very clayey, sandy, angular to subangular fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.		∇
2.00-3.00 2.20-2.65	BS SPT N=7		1,3/2,1,2,2		 (2.00)			
2.90	ES							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3.20-3.65	SPT N=7		4,4/3,2,2		- 3.20 - 3.20 	Complete at 3.20m		
Remarks Hole comple Backfilled wi	te at UXO-safe dept th arisings upon con	h, and due	e to hole collapse.		-	Scale (approx)	Logge By	€
Groundwate Hand excava	r encountered at 1.3 ated to 1.2 m due to	0 m. risk of ser	vices.			1:20	MV	
						Figure I	No. 57.WS08	

Water strike(1) at 1.50m.	Environme	ent & mining services						WSO	9
Index LUX-and depth output: Leastion - Box cave n Park Date - International - Internationa - Internat	Nindowless until SPT N=	sample borehole 50. hole collapse	Dimens	ions	Ground	Level (mOD)		Numb	
Determent WAC (17) Dependent Sample / Tests Media Field Records Motion Description Legendent 100 ES I Field Records In 20 Motion (GRO/MD, Malahaman, terp clamp, sambly angular to term clamp) Image: Test clamp (Field Records) Image: Test clam (Field Records)	and/or UXO-	-safe depth	Locatio	n	Dates	/12/2023	Engineer	Sheet	
1.00 ES Image: Second CRVEL of Imported III material. Image: Second CRVEL of Imported III material. 1.00 ES Image: Second CRVEL of Imported III material. Image: Second CRVEL of Imported III material. 1.00-2.00 BS Image: Second CRVEL of Imported III material. Image: Second CRVEL of Imported III material. 1.00-2.00 BS Image: Second CRVEL of Imported III material. Image: Second CRVEL of Imported III material. 1.00-2.01 BS Image: Second CRVEL of Imported III material. Image: Second CRVEL of Imported III material. 1.00-2.02 BS Image: Second CRVEL of Imported III material. Image: Second CRVEL of Imported III material. 1.00-2.03 BS Veter stitle(1) at 1.50m. Image: Second CRVEL of Imported III material. Image: Second CRVEL of Imported III material. 1.20-3.65 SPT N-3 2.211.1.1.0 Image: Second CRVEL of Imported III material. Image: Seco			Во	scawen Park	0	12/2023	WJC	1/2	
130 ES Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. 170 ES Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. 170 ES Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. 170 ES Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. 170 ES Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. 170 ES Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. 120-265 SPT N=3 2,2/1,1,0 Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. 120-285 SPT N=5 11,1,1,2 Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. 120-285 SPT N=5 11,1,1,2 Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. Image: CRUMP. Methods and the boarse. 180 ES Image: CRUMP. Methods and the boarse. 180 ES Image: CRUMP. Methods and the boarse.	Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
1.70 ES 1.00-2.00 BS Water strike(1) at 1.50m. MADE GROUND. Md brownish-grey very daysey, sandy, in the coarse. 1.20-2.205 SPT N=3 2.20-2.265 SPT N=3 2.20-2.45 SPT N=3 2.20-2.65 SPT N=3 2.20-2.65 SPT N=5 1.10 MADE GROUND. Growth bage very daysey, sandy, in the coarse. 1.20-3.65 SPT N=5							MADE GROUND. Mid-brown, very clayey, sandy, angular to subangular, fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.		
1.00-2.00 BS Water strike(1) at 1.50m. In the borner draws: subclass of the borner draws: subcla	0.30	ES				- - - - - - - - - (1.20)			
Water strike(1) at 1.50m. ADE GROUND. Mid brownisit-gray, way diayay, sandy, angular, fine to coarse GRAVEL of imported fill material. Sand is fine to coarse. 220-2.65 SPT N=3 2,2/1,1,1,0 320-3.65 SPT N=5 1/1,1,1,2 3.20 MADE GROUND. Greyteh beige very clayey, sandy, angular fine to coarse. 1/1,1,1,2 <td>).70</td> <td>ES</td> <td></td> <td></td> <td></td> <td>- - - - -</td> <td></td> <td></td> <td></td>).70	ES				- - - - -			
220-2.65 SPT N=3 2.2/1,1,1,0 Image: standard s	.00-2.00 BS				 1.20	MADE GROUND. Mid brownish-grey, very clayey, sandy, angular to subangular, fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.			
3.20-3.65 SPT N=5 1/1,1,1,2 ADE GROUND. Greyish beige very clayey, sandy, angular to subangular fine to coarse GRAVEL of imported fill material. Sand is fine to coarse. 3.80 BS International and the subangular fill material. Sand is fine to coarse. Remarks International and the subangular fill material. Sand is fine to coarse. International and the subangular fill material. Sand is fine to coarse. Scale (approx)				Water strike(1) at 1.50m.					V
3.20-3.65 SPT N=5 1/1,1,1,2 ADE GROUND. Greyish beige very clayey, sandy, angular to subangular fine to coarse GRAVEL of imported fill material. Sand is fine to coarse. 3.80 BS International and the subangular fill material. Sand is fine to coarse. Remarks International and the subangular fill material. Sand is fine to coarse. International and the subangular fill material. Sand is fine to coarse. Scale (approx)									
All and a services. A services	2.20-2.65	SPT N=3		2,2/1,1,1,0		(2.00) 			
All and a services. A services						- - - - - - - - - - - - -			
8.80 BS 8.80 ES Image: Second state of the seco	.20-3.65	SPT N=5		1/1,1,1,2		- 3.20 	MADE GROUND. Greyish beige very clayey, sandy, angular to subangular fine to coarse GRAVEL of imported fill material. Sand is fine to coarse.		
Hand excavated to 1.2 m due to risk of services. Groundwater encountered at 1.50 m.	3.80 3.80	BS ES				(1.00)			
Backfilled with arisings upon completion. Hole complete at UXO-safe depth. 1:20 MV	Remarks land excava	ated to 1.2 m due to	risk of ser 0 m	vices.			Scale (approx)	Logge By	d
	Backfilled wi	ith arisings upon com te at UXO-safe dept	pletion. h.				1:20	MV	

Wheal Jan Consultan	ne cy				Site		Numbe		
	ent & mining services	1				Boscawen Park, Truro		WS0	9
Excavation Windowless until SPT N=	Method sample borehole 50, hole collapse safe depth	Dimensio	ns	Ground	Level (mOD)	Client WWA		Job Numbe 21757	
and/or UXO- reached.	-safe depth	Location		Dates 01	/12/2023	Engineer		Sheet	
	[cawen Park			WJC		2/2	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
						Complete at 4.20m			
Remarks Hand excava	ated to 1.2 m due to r encountered at 1.5	risk of servi	ces.				Scale (approx)	Logged By	d
Groundwate Backfilled wi Hole comple	r encountered at 1.5 th arisings upon con te at UXO-safe dept	u m. ıpletion. h.					1:20	MV	
							Figure N	lo.	
							21757	7.WS09	

Wheal Jan Consultan	e CU nt & mining services					Site Boscawen Park, Truro	Number WS10	
until SPT N=	sample borehole 50, hole collapse	Dimens	ions	Ground	Level (mOD)	Client WWA	Job Number 21757	
and/or UXO- reached.	safe depth	Locatio Bo	n scawen Park	Dates 01	/12/2023	Engineer WJC	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
0.20	ES							
0.60	ES				- (1.20) 	MADE GROUND. Mid brownish-grey, very clayey, sandy, angular to subangular, fine to coarse GRAVEL of imported		
1.50-3.00			Water strike(1) at 1.40m.			fill material. Sand is fine to coarse.	Z	
2.20-2.65	SPT N=19		1,2/2,2,7,8		(2.00)			
2.90	ES				- 3.20 - 3.20 	Complete at 3.20m		
Remarks Hand excava	ated to 1.2 m due to r	risk of ser	vices.			Scale (approx)	Logged By	
Groundwater Backfilled wi Hole comple	r encountered at 1.4 th arisings upon com te at UXO-safe deptl	0 m. pletion. h, and due	e to hole collapse.			1:20 Figure I	MV	

Wheal Jar Consultan	TCU ent & mining services					Site Boscawen Park, Truro			Trial P Numb DCP	er
Machine : D P Method :	ynamic Cone enetrometer	Excavat	tion Method	Ground	Level (mOD)	Client WWA			Job Numb 2175	
		Locatio Bo	on oscawen Park	Dates 01	1/12/2023	Engineer WJC			Sheet 1/1	
Depth (m)	Sample / Tests	Layer CBR % Value	CBR Value Per Blow 1 10 100 1000	Level (mOD)	Depth (m) (Thickness)	D	escription		Legend	Water
				I	-					
					-					
		5.9			-					
					-					
					-					
		17			-					
					-					
					-					
		48								
					-	Complete at 0.95m				
					-					
					-					
					-					
					-					
					-					
						Remarks				
	DCPO3	04	DCP02 DCP01 DCP05			Remarks Scale (approx)	Logged By	Figure	No.	
						1:10	- 33 7		57.DCP0	1

Wheal Jar Consultan	TC ICU Lerrt & mining services					Site Boscawen Park, Truro			Trial P Numbe DCP(er
Machine : D P Method :)ynamic Cone 'enetrometer	Excavat	ion Method	Ground	Level (mOD)	Client WWA			Job Numbe 2175	
		Location Bos	n scawen Park	Dates 01	/12/2023	Engineer WJC			Sheet 1/1	
Depth (m)	Sample / Tests	Layer CBR % Value	CBR Value Per Blow 1 10 100	Level (mOD)	Depth (m) (Thickness)	D	escription	L	.egend	Water
					-					
		12			-					
					-					
		22			-					
					-					
		16			-					
			\leq		-					
			<		-	Complete at 0.96m				
					- -					
					-					
					-					
					-					
						Remarks				
			DCP02							
	DCP03		DCP01							
N.	DCP	04	DCP05	I						
						Scale (approx) 1:10	Logged By	Figure N	No. .DCP0	2
1		ALC: NOT THE		10		1.10		21131		-

Wheal Jane Consultancy Evinover & Imming services					Site Boscawen Park, Truro			Trial P Numbo	er	
Machine : Dynamic Cone Penetrometer Excavation Method Method :			Ground Level (mOD)		Client WWA			Job Numbo 2175		
		Location Boscawen Park		Dates 01/12/2023		Engineer WJC			Sheet 1/1	
Depth (m)	Sample / Tests	Layer CBR % Value	CBR Value Per Blow 1 10 100	Level (mOD)	Depth (m) (Thickness)	, D	escription	L	.egend	Water
					-					
					-					
		7.1			_					
					-					
		9.8			_					
					_					
		5.5			-					
					_					
					-	Complete at 0.96m				-
					-					
					_					
					_					
					-					
					-					
	37		5 - Que	A		Remarks				<u> </u>
		10	DGP02							
	DCP03	6.9	DCP01							
	DCP03	04	DCP05	In the second						
	X	-		1			Logged By	Figure I	No	
						Scale (approx) 1:10	Loggen Dy		NO. 7.DCP0	2

Wheal Jane Consultancy Forderwerk & mining services		Site Boscawen Park, Truro		Trial Pit Number DCP04	
DCP Details Excavation Method Complete at refusal. Image: Complete at refusal.		Ground Level (mOD)	Client WWA		Job Number 21757
Location D Boscawen Park		Dates 01/12/2023	Engineer WJC		Sheet 1/1
Depth (m) Sample / Tests		01/12/2023	MJC	escription	
DCI	PO4		Scale (approx) 1:10	Logged By	Figure No. 21757.DCP04

Wheal Jane Consultancy Environment & mining services					Site Boscawen Park, Truro			Trial P Numbe DCP(er		
Machine : Dynamic Cone Penetrometer Excavation Method (Method : (Ground Level (mOD)) Client WWA			Job Number 21757				
		Location Boscawen Park		Dates 01/12/2023		Engineer WJC		:	Sheet 1/1		
Depth (m)	Sample / Tests	Layer CBR % Value		BR Value Per Blow 0 100 1000	Level (mOD)	Depth (m) (Thickness) D	escription	L	.egend	Water
			, , , , , , , , , , , , , , , , , , ,	r r r r r r r r r r r r r r r r r r r		-					
						-					
			\sim			_					
		9.3	Ĺ	>		_					
			٢	\rangle		-					
						_					
		7.3	/			-					
						-					
		152				-					
				Ι		-	Complete at 0.96m				
						_					
						_					
						-					
	<u>897</u>		5.20				Remarks				
4		1		CP02							
	100	619		DCP01							
	DCP03		DCP05	Xa	Con a						
DCP04											
							Scale (approx) 1:10	Logged By	Figure N	No. 7.DCP0	5

APPENDIX B

Trial Pit Photographs

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

TP04

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

i.

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

TP08

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

i

TP08

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Trial Pit:

TP08

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

Trial Pit:

Site Name: Boscawen park	Job Number: 21757
Phase 2 Ground Investigation	Exploratory Hole Photographs
Client: Ward Williams Associates	Date: 21.02.2024

APPENDIX C

Chemical Laboratory Results

Thomas Gibson Wheal Jane Services Old Mine Offices Wheal Jane Baldhu Truro Cornwall TR3 6EE

t: 01872 560200

f: 01872 560826

e: consultancy@wheal-jane.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 23-74437

Project / Site name:	Boscawen Park	Samples received on:	11/12/2023
Your job number:	21757	Samples instructed on/ Analysis started on:	13/12/2023
Your order number:	21757	Analysis completed by:	02/01/2024
Report Issue Number:	1	Report issued on:	02/01/2024
Samples Analysed:	16 soil samples		

Signed: A. Gerwinska

Agnieszka Czerwińska Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				2908352	2908353	2908354	2908355	2908356
Sample Reference		TP02	TP02	TP03	TP03	TP04		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.60	1.00	0.10	1.40	0.60		
Date Sampled		30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023		
Time Taken				None Supplied				
		-		None Supplied	None Supplied	Hone Supplied	Hone Supplied	Hone Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	15	22	36	18
Total mass of sample received	kg	0.001	NONE	0.9	0.7	1	0.7	0.8
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	Not-detected	-	-
Asbestos Analyst ID	N/A	N/A	N/A	N/A	N/A	IZJ	N/A	N/A
·								
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	6.1	-	7.1	-
Total Cyanide	mg/kg	1	MCERTS	-	< 1.0	-	3	-
Free Cyanide	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
Thiocyanate as SCN	mg/kg	5	NONE	-	< 5.0	-	< 5.0	-
Total Sulphate as SO4	mg/kg	50	MCERTS	-	1500	-	2600	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	490	-	1700	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.244	-	0.866	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	244	-	866	-
Sulphide	mg/kg	1	MCERTS	-	8.6	-	110	-
Organic Matter (automated)	%	0.1	MCERTS	-	2.7	5.4	6.7	-
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	_
Speciated PAHs					. 110		. 10	
Naphthalene	mg/kg	0.05	MCERTS	-	0.1	-	0.3	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	0.12	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05		0.09	-
Fluorene	mg/kg	0.05	MCERTS		< 0.05		0.17	
Phenanthrene	mg/kg	0.05	MCERTS	-	0.12		0.58	-
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	0.31	
Fluoranthene	mg/kg	0.05	MCERTS	-	0.17	-	1.6	-
Pyrene	mg/kg	0.05	MCERTS	-	0.15	-	1.3	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	0.08	-	0.76	-
Chrysene	mg/kg	0.05	MCERTS	-	0.12	-	0.78	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	0.14	-	0.9	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	0.06	-	0.3	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	0.07	-	0.62	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	0.46	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	0.11	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	-	0.51	-
					. 0.05		0.51	
Total PAH			100 / 2005					
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	-	1.01	-	8.89	-

Lab Sample Number				2908352	2908353	2908354	2908355	2908356
Sample Reference		TP02	TP02	TP03	TP03	TP04		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.60	1.00	0.10	1.40	0.60		
Date Sampled		30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-	-	-		-			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	35	1800	-	350	770
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	1.4	-	8.9	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	-	< 1.8	-	< 1.8	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	32	-	25	26
Copper (aqua regia extractable)	mg/kg	1	MCERTS	45	1100	-	630	580
Lead (aqua regia extractable)	mg/kg	1	MCERTS	39	260	-	420	190
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.4	-	1.1	1.1
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	31	34	-	28	38
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	100	390	-	1200	250
Monoaromatics & Oxygenates Benzene	µg/kg	5	MCERTS	-	< 5.0	-	< 5.0	-
Toluene	µg/kg	5	MCERTS	-	< 5.0	-	< 5.0	-
Ethylbenzene	µg/kg	5	MCERTS	-	< 5.0	-	< 5.0	-
p & m-xylene	µg/kg	5	MCERTS	-	< 5.0	-	< 5.0	-
o-xylene	µg/kg	5	MCERTS	-	< 5.0	-	< 5.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	< 5.0	-	< 5.0	-
Petroleum Hydrocarbons TPH C10 - C40 _{EH_CU_1D_TOTAL}	mg/kg	10	MCERTS	-	-	-	-	-
			1					
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	-	< 0.020	-	< 0.020	-
TPH-CWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.02	NONE	-	< 0.020	-	< 0.020	-
TPH-CWG - Aliphatic >EC8 - EC10 _{HS_1D_AL}	mg/kg	0.05	NONE	-	< 0.050	-	< 0.050	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	< 8.0	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	-	150	-	9.8	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	160	-	12	-
		0.01	NONE				0.010	
TPH-CWG - Aromatic >EC5 - EC7 $_{HS_{1D}AR}$	mg/kg	0.01	NONE	-	< 0.010	-	< 0.010	-
TPH-CWG - Aromatic >EC7 - EC8 $HS_{1D_{AR}}$	mg/kg	0.01	NONE	-	< 0.010	-	< 0.010	-
TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR}	mg/kg	0.05	NONE	-	< 0.050	-	< 0.050	-
TPH-CWG - Aromatic >EC10 - EC12 $_{EH_{CU_{1D}AR}}$	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 $_{EH_{CU_{1D}AR}}$	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 $_{EH_{CU_{1D}AR}}$	mg/kg	10	MCERTS	-	< 10	-	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR} TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg mg/kg	10 10	MCERTS NONE	-	43	-	16	-
FIFUWG - ALOIHAUC (ECS - ECSS) EH_CU+HS_1D_AR	iiig/kg	10	NUNL	-	46	-	26	-

Lab Sample Number	2908352	2908353	2908354	2908355	2908356			
Sample Reference	TP02	TP02	TP03	TP03	TP04			
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.60	1.00	0.10	1.40	0.60		
Date Sampled	30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs		_						
Chloromethane	µg/kg	5	ISO 17025	-		-	-	-
Chloroethane	µg/kg	5	NONE	-	-	-	-	-
	µg/kg	5	ISO 17025	-	-	-		-
Bromomethane	µg/kg	5	NONE	-				
Vinyl Chloride	µg/kg	5	NONE		-	-	-	-
Trichlorofluoromethane				-	-	-	-	-
1,1-dichloroethene	µg/kg	5	NONE NONE	-	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	5 5	NONE	-	-	-	-	-
Trans 1,2-dichloroethylene	µg/kg	5		-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg		NONE	-	-	-	-	-
1,1-dichloroethane	µg/kg	5	ISO 17025	-	-	-	-	-
2,2-Dichloropropane	µg/kg	5	ISO 17025	-	-	-	-	-
Chloroform	µg/kg	5	NONE	-	-	-	-	-
1,1,1-Trichloroethane	µg/kg	5	ISO 17025	-	-	-	-	-
1,2-dichloroethane	µg/kg	5	ISO 17025	-	-	-	-	-
1,1-Dichloropropene	µg/kg	5	ISO 17025	-	-	-	-	-
Cis-1,2-dichloroethene	µg/kg	5	ISO 17025	-	-	-	-	-
Benzene	µg/kg	5	MCERTS	-	-	-	-	-
Carbontetrachloride	µg/kg	5	NONE	-	-	-	-	-
1,2-dichloropropane	µg/kg	5	ISO 17025	-	-	-	-	-
Trichloroethene	µg/kg	5	ISO 17025	-	-	-	-	-
Dibromomethane	µg/kg	5	ISO 17025	-	-	-	-	-
Bromodichloromethane	µg/kg	5	ISO 17025	-	-	-	-	-
Cis-1,3-dichloropropene	µg/kg	5	ISO 17025	-	-	-	-	-
Trans-1,3-dichloropropene	µg/kg	5	ISO 17025	-	-	-	-	-
Toluene	µg/kg	5	MCERTS	-	-	-	-	-
1,1,2-Trichloroethane	µg/kg	5	ISO 17025	-	-	-	-	-
1,3-Dichloropropane	µg/kg	5	ISO 17025	-	-	-	-	-
Dibromochloromethane	µg/kg	5	ISO 17025	-	-	-	-	-
Tetrachloroethene	µg/kg	5	NONE	-	-	-	-	-
1,2-Dibromoethane	µg/kg	5	ISO 17025	-	-	-	-	-
Chlorobenzene	µg/kg	5	ISO 17025	-	-	-	-	-
1,1,1,2-Tetrachloroethane	µg/kg	5	ISO 17025	-	-	-	-	-
Ethylbenzene	µg/kg	5	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	5	MCERTS	-	-	-	-	-
Styrene	µg/kg	5	ISO 17025	-	-	-	-	-
Bromoform	µg/kg	5	NONE	-	-	-	-	-
o-xylene	µg/kg	5	MCERTS	-	-	-	-	-
Isopropylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
1,1,2,2-Tetrachloroethane	µg/kg	5	ISO 17025	-	-	-	-	-
Bromobenzene	µg/kg	5	NONE	-	-	-	-	-
N-Propylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
2-Chlorotoluene	µg/kg	5	ISO 17025	-	-	-	-	-
4-Chlorotoluene	µg/kg	5	ISO 17025	-	-	-	-	-
1,3,5-Trimethylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
Tert-Butylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
1,2,4-Trimethylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
Sec-Butylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
1,3-dichlorobenzene	µg/kg	5	ISO 17025	-	-	-	-	-
P-Isopropyltoluene	µg/kg	5	ISO 17025	-	-	-	-	-
1,4-dichlorobenzene	µg/kg	5	ISO 17025	-	-	-	-	-

Lab Sample Number	2908352	2908353	2908354	2908355	2908356			
Sample Reference				TP02	TP02	TP03	TP03	TP04
Sample Number				None Supplied				
Depth (m)				0.60	1.00	0.10	1.40	0.60
Date Sampled				30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Butylbenzene	µg/kg	5	NONE	-	-	-	-	-
1,2-Dibromo-3-chloropropane	µg/kg	5	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	µg/kg	5	ISO 17025	-	-	-	-	-
Hexachlorobutadiene	µg/kg	5	NONE	-	-	-	-	-
1,2,3-Trichlorobenzene	µg/kg	5	ISO 17025	-	-	-	-	-

Lab Sample Number	2908352	2908353	2908354	2908355	2908356			
Sample Reference		TP02	TP02	TP03	TP03	TP04		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.60	1.00	0.10	1.40	0.60		
Date Sampled		30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023		
Time Taken	-			None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs		_			<u></u>		<u> </u>	
Aniline	mg/kg	0.1	NONE	-	-	-	-	-
Phenol	mg/kg	0.1	ISO 17025	-	-	-		-
2-Chlorophenol	mg/kg	0.2	MCERTS	-				
Bis(2-chloroethyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS					
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-		-	
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.2	MCERTS	-	-			
2-Methylphenol	mg/kg	0.1	MCERTS	-	-	-	-	-
Hexachloroethane	mg/kg	0.05	ISO 17025	-	-	-	-	-
Nitrobenzene	mg/kg	0.03	MCERTS	-	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Nitrophenol	mg/kg	0.2	NONE	-	-		-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
	mg/kg	0.3	MCERTS	-	-	-		-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	-
1,2,4-Trichlorobenzene Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	-
· ·	mg/kg	0.05	MCERTS	-	-	-		-
2,4-Dichlorophenol 4-Chloroaniline	mg/kg	0.3	NONE	-	-		-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	-
	mg/kg	0.1	NONE	-	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	-	-		-	
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	-	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	-
Dimethylphthalate	mg/kg	0.1	NONE	-	-	-	-	
2,6-Dinitrotoluene	mg/kg	0.05	MCERTS	-	-		-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	-
Acenaphthene	mg/kg	0.03	NONE	-		-		-
2,4-Dinitrotoluene Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	-
	mg/kg	0.2	MCERTS	-	-	-	-	-
Diethyl phthalate 4-Nitroaniline	mg/kg	0.2	NONE	-	-	-	-	-
Fluorene	mg/kg	0.2	MCERTS	-	-	-	-	-
Azobenzene	mg/kg	0.05	NONE	-	-	-	-	-
	mg/kg	0.2	MCERTS	-	-	-	-	-
Bromophenyl phenyl ether Hexachlorobenzene	mg/kg	0.2	MCERTS	-	-		-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-		-	-
Anthracene	mg/kg	0.05	MCERTS	-	-		-	-
Carbazole	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibutyl phthalate	mg/kg	0.3	NONE	-	-	-	-	-
Anthraquinone	mg/kg	0.2	NONE	-	-		-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
	mg/kg	0.05	MCERTS	-	-	-	-	-
Pyrene Butyl benzyl phthalate	mg/kg	0.03	NONE	-	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-		-	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	-		-	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	-	-	-	-
שבויצט(א)וומטומוונווכווכ		5.05	100 17020	-	1	-	-	-

Lab Sample Number	2908352	2908353	2908354	2908355	2908356			
Sample Reference				TP02	TP02	TP03	TP03	TP04
Sample Number				None Supplied				
Depth (m)				0.60	1.00	0.10	1.40	0.60
Date Sampled				30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Lab Sample Number			2908357	2908358	2908359	2908360	2908361					
Sample Reference				TP05	TP05	TP06	TP06	TP07				
Sample Number				None Supplied								
Depth (m)				0.30	2.00	0.20	0.70	0.40				
Date Sampled				30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023				
Time Taken				None Supplied								
		-		None Supplied	None Supplied	Hone Supplied	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status									
Stone Content	%	0.1	NONE	< 0.1	< 0.1	-	< 0.1	-				
Moisture Content	%	0.01	NONE	25	49	-	17	-				
Total mass of sample received	kg	0.001	NONE	0.7	0.8	-	0.7	-				
		1		0.7	0.0		0.7					
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	Not-detected	-	Not-detected				
Asbestos Analyst ID	N/A	N/A	N/A	N/A	N/A	IZJ	N/A	IZJ				
		I	1	11/17	17/17		17/17	رے۔				
General Inorganics												
pH - Automated	pH Units	N/A	MCERTS	-	7.7	-	-	-				
Total Cyanide	mg/kg	1	MCERTS	-	< 1.0	-	-	-				
Free Cyanide	mg/kg	1	MCERTS	-	< 1.0	-						
Thiocyanate as SCN	mg/kg	5	NONE		< 5.0	-		-				
Total Sulphate as SO4	mg/kg	50	MCERTS	-	5000	-		-				
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-		-		-				
Water Soluble S04 16hr extraction (2:1 Leachate	iiig/kg	2.5	MCERTS	-	3200	-	-	-				
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	-	1.6	-	-	-				
Equivalent)	mg/l	1.25	MCERTS	-	1600	-	-	-				
Sulphide	mg/kg	1	MCERTS	-	2200	-	-	-				
Organic Matter (automated)	%	0.1	MCERTS	-	14	-	-	-				
Total Phenols												
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-	-	-				
Speciated PAHs												
Naphthalene	mg/kg	0.05	MCERTS	-	2.3	-	-	-				
Acenaphthylene	mg/kg	0.05	MCERTS	-	0.31	-	-	-				
Acenaphthene	mg/kg	0.05	MCERTS	-	0.48	-	-	-				
Fluorene	mg/kg	0.05	MCERTS	-	0.73	-	-	-				
Phenanthrene	mg/kg	0.05	MCERTS	-	1.6	-	-	-				
Anthracene	mg/kg	0.05	MCERTS	-	0.4	-	-	-				
Fluoranthene	mg/kg	0.05	MCERTS	-	2	-	-	-				
Pyrene	mg/kg	0.05	MCERTS	-	1.8	-	-	-				
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	1.5	-	-	-				
Chrysene	mg/kg	0.05	MCERTS	-	1.5	-	-	-				
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	2.2	-	-	-				
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	1.1	-	-	-				
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	1.7	-	-	-				
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	1.2	-	-	-				
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	0.21	-	-	-				
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	1.1	-	-	-				
Total PAH	-											
	mg/kg	0.8	ISO 17025									
Speciated Total EPA-16 PAHs	iiig/kg	0.0	130 17023	-	20	-	-	-				

Sample Reference TT05 TP05 TP06 Stores Suppled Debte Sampled T 0.30 2.00 0.20 0.70 0.40 0.40 Time Taken J 3011/12023	Lab Sample Number		2908357	2908358	2908359	2908360	2908361		
Depth (m) 0.30 2.00 0.20 0.70 0.01 Date Samgled	Sample Reference				TP05	TP05	TP06	TP06	TP07
Depth (m) 0.30 2.00 0.70 0.70 0.40 Date Sampled 301/12023 3	Sample Number				None Supplied				
Time Taken None Supplied None Suppli	Depth (m)				0.30	2.00	0.20	0.70	0.40
Analytical Parameter (Soll Analysis) E B E B	Date Sampled				30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023
Heavy Metals / Metalloids Image Im	Time Taken				None Supplied				
Assert (aqua regia estractable) mg/ng 1 MCERTS 120 130 . 150 . Bron (water soluble) mg/ng 0.2 MCERTS 1.1 9.6 . 1.1 . Communi (qua regia estractable) mg/ng 0.2 MCERTS . . 1.6 Chromium (qua regia estractable) mg/ng 1.8 MCERTS . . 1.6 Comput regia estractable) mg/ng 1.8 MCERTS 140 860 . 7.6 . Cad (aqua regia estractable) mg/ng 1.4 MCERTS 630 1100 . 669 . Selemin (qua regia estractable) mg/ng 1.4 MCERTS 2.8 86 . 2.5 .		Units	Limit of detection	Accreditation Status					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Heavy Metals / Metalloids					-		-	
Cadmum (aqua regia extractable) mg/hg 0.2 MCRENTS < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	120	130	-	150	-
International (Pace and end of the constraint) mg/mg 1.8 MCERTS < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	9.6	-	1.1	-
Commun (usus regia extractable) mg/ng 1 MCERTS 19 36 - 16 Copper (aqua regia extractable) mg/ng 1 MCERTS 140 860 - 76 Lead (aqua regia extractable) mg/ng 1 MCERTS 630 1100 - 69 - Mercury (aqua regia extractable) mg/ng 1 MCERTS 1 2.5 - <	Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	< 0.2	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chromium (hexavalent)	mg/kg	1.8	MCERTS	-	< 1.8	-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		mg/kg	1	MCERTS	19	36	-	16	-
Description Description Description Description Mickel (quar regia extractable) mg/kg 1 MCERTS 2.5 - <<0.3	Copper (aqua regia extractable)	mg/kg	1	MCERTS	140	860	-	76	-
Mercury (aqua regia extractable) mg/kg 0.3 MCRNTS 1 2.5 . < < Nickel (aqua regia extractable) mg/kg 1 MCRERTS 28 86 . 25 . Selenium (aqua regia extractable) mg/kg 1 MCRERTS 28 86 . 25. . Captica extractable mg/kg 1 MCRERTS 28 86 . 25. . Monoaromatics & Oxygenates mg/kg 1 MCRRTS . < 5.0		mg/kg	1	MCERTS	630	1100	-	69	-
Index (optimultation) Implify Implify <thimplify< t<="" td=""><td>Mercury (aqua regia extractable)</td><td>mg/kg</td><td>0.3</td><td>MCERTS</td><td>1</td><td>2.5</td><td>-</td><td>< 0.3</td><td>-</td></thimplify<>	Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1	2.5	-	< 0.3	-
Directory mg/ng 1 MCERTS 350 1800 - 150 - Monoaromatics & Oxygenates Benzene µg/ng 5 MCERTS - < 5.0	Nickel (aqua regia extractable)	mg/kg	1	MCERTS	28	86	-	25	-
Particity Representation Prod P	Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
Benzene µg/kg 5 MCERTS - < 5.0 - - - Toluene µg/kg 5 MCERTS - <5.0	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	350	1800	-	150	-
Decision	Benzene								
Dynamic biology Dial Dial <thdia< th=""> Dial Dial</thdia<>									
Process Page Pagee Pagee Pagee	*	_							
Dynam Dyna Dynam Dynam <thd< td=""><td></td><td>_</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td></thd<>		_			-		-		-
Petroleum Hydrocarbons TPH-CWG - Aliphatic >ECS - ECG _{HS_1D_AL} mg/kg 0.02 NONE - - - - TPH-CWG - Aliphatic >ECS - ECG _{HS_1D_AL} mg/kg 0.02 NONE - - </td <td>•</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td>	•				-		-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MTBE (Methyl Tertiary Butyl Ether)	µg/кд	5	NONE	-	< 5.0	-	-	-
TPH-CWG - Aliphatic >ECS - ECG _{HS,1D,AL} mg/kg 0.02 NONE - < 0.020 - - - TPH-CWG - Aliphatic >EC6 - EC8 _{HS,1D,AL} mg/kg 0.02 NONE - < 0.020	-	ma/ka	10	MCERTS]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	···· • • • • • • • • • • • • • • • • •	5,9			-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TPH-CWG - Aliphatic >EC5 - EC6	ma/ko	0.02	NONE	-	< 0.020	-	_	_
TPH-CWG - Aliphatic >EC8 - EC10 _{HS,1D,AL} mg/kg 0.05 NONE - < 0.050 - </td <td>TPH-CWG - Aliphatic > EC6 - EC8 $\mu_{S-1D-AL}$</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	TPH-CWG - Aliphatic > EC6 - EC8 $\mu_{S-1D-AL}$			-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_							
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_ID_AL} mg/kg 10 NONE 140 - - - - TPH-CWG - Aromatic >EC5 - EC7 _{HS_ID_AR} mg/kg 0.01 NONE - < 0.010								-	-
TPH-CWG - Aromatic >EC5 - EC7 $_{HS_1D_AR}$ mg/kg 0.01 NONE - < 0.010 -	TPH-CWG - Aliphatic (EC5 - EC35) FH (11+HS 1D AI					-		-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR mg/kg 0.01 NONE - < 0.010 -		1							
TPH-CWG - Aromatic >EC7 - EC8 $_{H_{5,1D,AR}}$ mg/kg 0.01 NONE - < 0.010 - <td>TPH-CWG - Aromatic >EC5 - EC7 HS 1D AP</td> <td>mg/kg</td> <td>0.01</td> <td>NONE</td> <td>-</td> <td>< 0.010</td> <td>-</td> <td>-</td> <td>-</td>	TPH-CWG - Aromatic >EC5 - EC7 HS 1D AP	mg/kg	0.01	NONE	-	< 0.010	-	-	-
TPH-CWG - Aromatic >EC10 + EC12 + EC10 + EC12 + CU_1D_AR mg/kg 0.05 NONE - < 0.050 - <	TPH-CWG - Aromatic >EC7 - EC8 Hs 1D AP	_			-		-	-	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH, CU, ID, AR} mg/kg 1 MCERTS - <1.0 -	TPH-CWG - Aromatic >EC8 - EC10 HG 1D AP	_	0.05					-	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_ID_AR} mg/kg 2 MCERTS - 4.6 - - - - TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_ID_AR} mg/kg 10 MCERTS - 25 - - - TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_ID_AR} mg/kg 10 MCERTS - 92 - - -	TPH-CWG - Aromatic >EC10 - EC12 FH CILID AP		1		-				-
TPH-CWG - Aromatic >EC16 - EC21 _{EH.CU.1D_AR} mg/kg 10 MCERTS _ 25 _ _ _ TPH-CWG - Aromatic >EC21 - EC35 _{EH.CU.1D_AR} mg/kg 10 MCERTS _ 92 _ _ _ _		_	2		-			-	-
TPH-CWG - Aromatic >EC21 - EC35 FH CU 1D AR mg/kg 10 MCERTS - 92	TPH-CWG - Aromatic >EC16 - EC21 FH CU 1D AR	_							
TPH_CW/C_Aromatic (ECS_EC3S) mg/kg 10 NONE	TPH-CWG - Aromatic >EC21 - EC35 EH CU 1D AP	_	10					-	-
171-CWG - Aloniau (LCJ - LCJ) EH CU+HS 1D AR 119/Ng 10 NONL - 120	TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	120	-	-	-

Lab Canada Number		2000257	2000250	2000250	2000260	2000261		
Lab Sample Number				2908357	2908358	2908359	2908360	2908361
Sample Reference				TP05	TP05	TP06	TP06	TP07
Sample Number				None Supplied				
Depth (m)				0.30	2.00	0.20	0.70	0.40
Date Sampled				30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
Chloroethane	µg/kg	5	NONE	-	< 5.0	-	_	-
Bromomethane	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
Vinyl Chloride	µg/kg	5	NONE	-	< 5.0	-	-	-
Trichlorofluoromethane	µg/kg	5	NONE	-	< 5.0	_	_	-
1,1-dichloroethene	µg/kg	5	NONE	-	< 5.0	-	_	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	5	NONE	-	< 5.0	-	-	-
Trans 1,2-dichloroethylene	µg/kg	5	NONE		< 5.0	-	-	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	< 5.0		-	-
1,1-dichloroethane	µg/kg	5	ISO 17025		< 5.0		-	-
2,2-Dichloropropane	µg/kg	5	ISO 17025 ISO 17025	-	< 5.0		-	
Chloroform	µg/kg	5	NONE	-	< 5.0	-	-	-
1,1,1-Trichloroethane	µg/kg	5	ISO 17025		< 5.0			
1,2-dichloroethane	µg/kg	5	ISO 17025	-	< 5.0		-	
1,1-Dichloropropene	µg/kg	5	ISO 17025		< 5.0	-		-
Cis-1,2-dichloroethene	µg/kg	5	ISO 17025		< 5.0			
Benzene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
	µg/kg	5	NONE		< 5.0	-	-	-
Carbontetrachloride	µg/kg	5	ISO 17025		< 5.0	-		-
1,2-dichloropropane	µg/kg	5	ISO 17025		< 5.0			
Trichloroethene Dibromomethane	µg/kg	5	ISO 17025 ISO 17025		< 5.0	-	-	-
Bromodichloromethane	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
	µg/kg	5	ISO 17025		< 5.0		-	-
Cis-1,3-dichloropropene	µg/kg	5	ISO 17025		< 5.0	-		-
Trans-1,3-dichloropropene Toluene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
1,1,2-Trichloroethane	µg/kg	5	ISO 17025	-	< 5.0	-		-
1,3-Dichloropropane	µg/kg	5	ISO 17025	-	< 5.0	-		-
Dibromochloromethane	µg/kg	5	ISO 17025		< 5.0			
Tetrachloroethene	µg/kg	5	NONE		< 5.0	-	-	-
	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
1,2-Dibromoethane	µg/kg	5	ISO 17025		< 5.0			
Chlorobenzene 1,1,1,2-Tetrachloroethane	µg/kg	5	ISO 17025 ISO 17025		< 5.0			-
Ethylbenzene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
p & m-xylene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
	µg/kg	5	ISO 17025		< 5.0	-		
Styrene Bromoform	µg/kg	5	NONE	-	< 5.0	-	-	-
o-xylene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
Isopropylbenzene	µg/kg	5	ISO 17025		< 5.0	-	-	-
1,1,2,2-Tetrachloroethane	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
Bromobenzene	µg/kg	5	NONE		< 5.0	-	-	-
N-Propylbenzene	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
2-Chlorotoluene	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
4-Chlorotoluene	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
1,3,5-Trimethylbenzene	µg/kg	5	ISO 17025 ISO 17025		< 5.0		-	-
Tert-Butylbenzene	µg/kg	5	ISO 17025 ISO 17025	-	< 5.0	-	-	-
1,2,4-Trimethylbenzene	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
Sec-Butylbenzene	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
1,3-dichlorobenzene	µg/kg	5	ISO 17025 ISO 17025	-	< 5.0	-	-	
P-Isopropyltoluene	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
1,4-dichlorobenzene	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
1,4-dichlorobenzene 1,2-dichlorobenzene	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
	P9/ 19	,	100 17020	· ·	< 5.0	-	-	-

Lab Sample Number	Lab Sample Number					2908359	2908360	2908361
Sample Reference				TP05	TP05	TP06	TP06	TP07
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				0.30	2.00	0.20	0.70	0.40
Date Sampled				30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)								
Butylbenzene	µg/kg	5	NONE	-	< 5.0	-	-	-
1,2-Dibromo-3-chloropropane	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
1,2,4-Trichlorobenzene	µg/kg	5	ISO 17025	-	< 5.0	-	-	-
Hexachlorobutadiene	µg/kg	5	NONE	-	< 5.0	-	-	-
μg/kg 5 ISO 17025			ISO 17025	-	< 5.0	-	-	-

Lab Camula Number		2000257	2000250	2000250	2000260	2000261		
Lab Sample Number				2908357	2908358	2908359	2908360	2908361
Sample Reference				TP05	TP05	TP06	TP06	TP07
Sample Number				None Supplied				
Depth (m)				0.30	2.00	0.20	0.70	0.40
Date Sampled				30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023
Time Taken		1		None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								I
Aniline	mg/kg	0.1	NONE	-	< 0.1	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2	-	_	-
	mg/kg	0.2	MCERTS	-	< 0.2	-	-	
2-Chlorophenol	mg/kg	0.1	MCERTS		< 0.2	-		-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS		< 0.2	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS			-	-	-
1,2-Dichlorobenzene		0.1	MCERTS		< 0.1			
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	-	-	-
2-Methylphenol	mg/kg		ISO 17025	-	< 0.3	-	-	-
Hexachloroethane	mg/kg	0.05		-	< 0.05	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	0.6	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
2-Nitrophenol	mg/kg	0.3	NONE	-	< 0.3	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	2.3	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	< 0.1	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	< 0.1	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	-	< 0.1	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	-	< 0.2	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	1	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	< 0.1	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	NONE	-	< 0.1	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	0.31	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	0.48	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	NONE	-	< 0.2	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	0.6	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
4-Nitroaniline	mg/kg	0.2	NONE	-	< 0.2	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	0.73	-	-	-
Azobenzene	mg/kg	0.3	NONE	-	< 0.3	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	1.6	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	0.4	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	< 0.3	-	-	-
Dibutyl phthalate	mg/kg	0.2	NONE		< 0.2	-	-	
Anthraquinone	mg/kg	0.2	NONE		< 0.2			
Fluoranthene	mg/kg	0.05	MCERTS	-	2	-	-	-
	mg/kg	0.05	MCERTS	-	1.8	-	-	-
Pyrene Butul benzul phthalate	mg/kg	0.03	NONE	-	< 0.3	-	-	-
Butyl benzyl phthalate	mg/kg	0.05	MCERTS					
Benzo(a)anthracene		0.05	MCERTS	-	1.5	-	-	-
Chrysene	mg/kg	0.05	ISO 17025		1.5			
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025 ISO 17025	-	2.2	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	150 17025	-	1.1	-	-	-

Lab Sample Number				2908357	2908358	2908359	2908360	2908361
Sample Reference				TP05	TP05	TP06	TP06	TP07
Sample Number				None Supplied				
Depth (m)				0.30	2.00	0.20	0.70	0.40
Date Sampled				30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)								
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	1.7	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	1.2	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	0.21	-	-	-
Benzo(ghi)perylene mg/kg 0.05 MCERTS			-	1.1	-	-	-	

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Lab Sample Number		2908362	2908363	2908364	2908365	2908366		
Sample Reference				TP07	TP08	WS05	WS06	WS08
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.70	0.10	0.10	2.90	0.40
Date Sampled				01/12/2023	01/12/2023	30/11/2023	30/11/2023	01/12/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		-		· · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	28	34	29	23
Total mass of sample received	kg	0.001	NONE	0.7	0.8	0.7	0.5	0.7
			•		•			
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	N/A	SSZ	N/A	N/A	N/A
· ·								
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	5.6	6.6	-	7.5
Total Cyanide	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Free Cyanide	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Thiocyanate as SCN	mg/kg	5	NONE	-	< 5.0	< 5.0	-	< 5.0
Total Sulphate as SO4	mg/kg	50	MCERTS	-	790	1800	-	1400
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	56	780	-	980
Water Soluble SO4 16hr extraction (2:1 Leachate	5, 5							
Equivalent)	g/l	0.00125	MCERTS	-	0.0278	0.389	-	0.488
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	27.8	389	-	488
Sulphide	mg/kg	1	MCERTS	-	4.3	160	-	90
Organic Matter (automated)	%	0.1	MCERTS	-	8.1	7.3	-	5.5
	•	•	•					
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
	•	•	•					
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	0.08	0.14	-	0.54
Acenaphthylene	mg/kg	0.05	MCERTS	-	0.08	0.08	-	0.28
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	0.08
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	0.11	-	0.25
Phenanthrene	mg/kg	0.05	MCERTS	-	0.68	0.89	-	3.9
Anthracene	mg/kg	0.05	MCERTS	-	0.15	0.32	-	0.53
Fluoranthene	mg/kg	0.05	MCERTS	-	2.5	1.8	-	5.6
Pyrene	mg/kg	0.05	MCERTS	-	2.3	1.6	-	4.4
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	1.3	1.1	-	1.9
Chrysene	mg/kg	0.05	MCERTS	-	1.4	1.2	-	2.4
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	1.6	1.2	-	2.4
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	0.82	0.62	-	1.2
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	1.4	1	-	1.9
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	0.73	0.54	-	1.1
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	0.19	0.18	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	0.75	0.51	-	1.1
Total PAH	mg/kg	0.8	ISO 17025		10.0	44.0		o= -
Speciated Total EPA-16 PAHs	iiig/kg	0.0	130 17023	-	13.9	11.3	-	27.5

Lab Sample Number		2908362	2908363	2908364	2908365	2908366		
Sample Reference				TP07	TP08	WS05	WS06	WS08
Sample Number				None Supplied				
Depth (m)				0.70	0.10	0.10	2.90	0.40
Date Sampled				01/12/2023	01/12/2023	30/11/2023	30/11/2023	01/12/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					-			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	230	38	160	160	190
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	1.4	4.7	3.3	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	-	< 1.8	< 1.8	-	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	26	17	21	25	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	160	46	260	280	220
Lead (aqua regia extractable)	mg/kg	1	MCERTS	210	120	320	290	1900
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.6	< 0.3	0.6	0.6	6.9
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	41	22	25	24	40
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	340	130	1200	620	890
Monoaromatics & Oxygenates Benzene	µg/kg	5	MCERTS	-	-	< 5.0	-	< 5.0
Toluene	µg/kg	5	MCERTS	-	-	< 5.0	-	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	-	-	< 5.0	-	< 5.0
p & m-xylene	µg/kg	5	MCERTS	-	-	< 5.0	-	< 5.0
o-xylene	µg/kg	5	MCERTS	-	-	< 5.0	-	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	-	< 5.0	-	< 5.0
Petroleum Hydrocarbons TPH C10 - C40 _{EH CU 1D} TOTAL	mg/kg	10	MCERTS	-	17	-	-	-
		1			1,	1	1	
TPH-CWG - Aliphatic >EC5 - EC6 HS 1D AL	mg/kg	0.02	NONE	-	-	< 0.020	-	< 0.020
TPH-CWG - Aliphatic > ECG - ECB $HS_{1D_{AL}}$	mg/kg	0.02	NONE	-	-	< 0.020	-	< 0.020
TPH-CWG - Aliphatic > EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	-	-	< 0.050	-	< 0.050
TPH-CWG - Aliphatic > EC0 - EC10 $_{HS_1D_{AL}}$	mg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0
TPH-CWG - Aliphatic > EC12 - EC16 $_{EH_{CU_{1}D_{AL}}}$	mg/kg	2	MCERTS	-	-	< 2.0	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 $_{\text{EH}_{-}\text{CU}_{-}\text{ID}_{-}\text{AL}}$	mg/kg	8	MCERTS	-	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic > EC21 - EC35 $_{EH_{CU_{1}D_{AL}}}$	mg/kg	8	MCERTS	-	-	< 8.0	-	9.1
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	< 10	-	12
	1	1	<u>.</u>		8	- 20	1	
TPH-CWG - Aromatic >EC5 - EC7 HS 1D AR	mg/kg	0.01	NONE	-	-	< 0.010	-	< 0.010
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.01	NONE	-	-	< 0.010	-	< 0.010
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	-	-	< 0.050	-	< 0.050
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	-	-	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	-	-	< 2.0	-	2.6
TPH-CWG - Aromatic >EC16 - EC21 $_{\text{EH}_{CU}_{1D}_{AR}}$	mg/kg	10	MCERTS	-	-	< 10	-	10
TPH-CWG - Aromatic >EC21 - EC35 $_{\text{EH}_{CU_{1}}\text{ID}_{AR}}$	mg/kg	10	MCERTS	-	-	19	-	< 10
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	-	26	-	23

		2000262	2000262	2000264	2000265	2000266		
Lab Sample Number				2908362	2908363	2908364	2908365	2908366
Sample Reference				TP07	TP08	WS05	WS06	WS08
Sample Number				None Supplied 0.70	None Supplied 0.10	None Supplied 0.10	None Supplied 2.90	None Supplied 0.40
Depth (m)				01/12/2023	01/12/2023	30/11/2023	30/11/2023	01/12/2023
Date Sampled Time Taken					None Supplied		None Supplied	
		-		None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs					8			·
Chloromethane	µg/kg	5	ISO 17025	-	-	-	-	-
Chloroethane	µg/kg	5	NONE	-	-	-	-	-
Bromomethane	µg/kg	5	ISO 17025	-	-	-	-	-
Vinyl Chloride	µg/kg	5	NONE	-	-	-	-	-
Trichlorofluoromethane	µg/kg	5	NONE	-	-	-	-	-
1,1-dichloroethene	µg/kg	5	NONE	-	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	5	NONE	-	-	-	-	-
Trans 1,2-dichloroethylene	µg/kg	5	NONE	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	-	-	-	-
1,1-dichloroethane	µg/kg	5	ISO 17025	-	-	-	-	-
2,2-Dichloropropane	µg/kg	5	ISO 17025	-	-	-	-	-
Chloroform	µg/kg	5	NONE	-	-	-	-	-
1,1,1-Trichloroethane	µg/kg	5	ISO 17025	-	-	-	-	-
1,2-dichloroethane	µg/kg	5	ISO 17025	-	-	-	-	-
1,1-Dichloropropene	µg/kg	5	ISO 17025	-	-	-	-	-
Cis-1,2-dichloroethene	µg/kg	5	ISO 17025	-	-	-	-	-
Benzene	µg/kg	5	MCERTS	-	-	-	-	-
Carbontetrachloride	µg/kg	5	NONE	-	-	-	-	-
1,2-dichloropropane	µg/kg	5	ISO 17025	-	-	-	-	-
Trichloroethene	µg/kg	5	ISO 17025	-	-	-	-	-
Dibromomethane	µg/kg	5	ISO 17025	-	-	-	-	-
Bromodichloromethane	µg/kg	5	ISO 17025	-	-	-	-	-
Cis-1,3-dichloropropene	µg/kg	5	ISO 17025	-	-	-	-	-
Trans-1,3-dichloropropene	µg/kg	5	ISO 17025	-	-	-	-	-
Toluene	µg/kg	5	MCERTS	-	-	-	-	-
1,1,2-Trichloroethane	µg/kg	5	ISO 17025	-	-	-	-	-
1,3-Dichloropropane	µg/kg	5	ISO 17025	-	-	-	-	-
Dibromochloromethane	µg/kg	5	ISO 17025	-	-	-	-	-
Tetrachloroethene	µg/kg	5	NONE	-	-	-	-	-
1,2-Dibromoethane	µg/kg	5	ISO 17025	-	-	-	-	-
Chlorobenzene	µg/kg	5 5	ISO 17025 ISO 17025	-	-	-	-	-
1,1,1,2-Tetrachloroethane	µg/kg	5	MCERTS	-	-	-	-	-
Ethylbenzene	µg/kg µg/kg	5	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	5	ISO 17025	-	-	-	-	-
Styrene Promoform	µg/kg	5	NONE	-	-	-	-	-
Bromoform o-xylene	µg/kg	5	MCERTS	-	-	-	-	-
Isopropylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
1,1,2,2-Tetrachloroethane	µg/kg	5	ISO 17025	-	-		-	
Bromobenzene	µg/kg	5	NONE	-	-	-	-	-
N-Propylbenzene	µg/kg	5	ISO 17025	-	-	-	-	
2-Chlorotoluene	µg/kg	5	ISO 17025	-	-	-	-	-
4-Chlorotoluene	µg/kg	5	ISO 17025	-	-	-	-	-
1,3,5-Trimethylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
Tert-Butylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
1,2,4-Trimethylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
Sec-Butylbenzene	µg/kg	5	ISO 17025	-	-	-	-	-
1,3-dichlorobenzene	µg/kg	5	ISO 17025	-	-	-	-	-
P-Isopropyltoluene	µg/kg	5	ISO 17025	-	-	-	-	-
1,4-dichlorobenzene	µg/kg	5	ISO 17025	-	-	-	-	-
1,2-dichlorobenzene	µg/kg	5	ISO 17025	-	-	-	-	-

Lab Sample Number	ab Sample Number					2908364	2908365	2908366
Sample Reference				TP07	TP08	WS05	WS06	WS08
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				0.70	0.10	0.10	2.90	0.40
Date Sampled				01/12/2023	01/12/2023	30/11/2023	30/11/2023	01/12/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)								
Butylbenzene	µg/kg	5	NONE	-	-	-	-	-
1,2-Dibromo-3-chloropropane	µg/kg	5	ISO 17025	-	-	-	-	-
1,2,4-Trichlorobenzene	µg/kg	5	ISO 17025	-	-	-	-	-
Hexachlorobutadiene	µg/kg	5	NONE	-	-	-	-	-
μg/kg 5 ISO 17025			-	-	-	-	-	

Lab Caracter N. Jaka		2000262	2000262	2000264	2000265	2000266		
Lab Sample Number				2908362	2908363	2908364	2908365	2908366
Sample Reference				TP07	TP08	WS05	WS06	WS08
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.70 01/12/2023	0.10 01/12/2023	0.10 30/11/2023	2.90 30/11/2023	0.40
Date Sampled Time Taken								
		_	-	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Hexachloroethane	mg/kg	0.05	ISO 17025	-	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	-
2-Nitrophenol	mg/kg	0.3	NONE	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	-	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	-	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	NONE MCERTS	-	-	-	-	-
Acenaphthylene	mg/kg	0.05		-	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	NONE MCERTS	-	-	-	-	-
Dibenzofuran	mg/kg mg/kg	0.2	MCERTS	-	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS	-	-		-	-
Diethyl phthalate	mg/kg	0.2	NONE	-	-	-		-
4-Nitroaniline Fluorene	mg/kg	0.2	MCERTS	-	-	-	-	-
Azobenzene	mg/kg	0.03	NONE	-	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	-
Hexachlorobenzene	mg/kg	0.2	MCERTS	-	-		-	
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-	
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	
Carbazole	mg/kg	0.3	MCERTS	-	_	-	-	-
Dibutyl phthalate	mg/kg	0.2	NONE	-	-	-	-	-
Anthraquinone	mg/kg	0.3	NONE	-	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	NONE	-	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	-	-	-	-

Lab Sample Number				2908362	2908363	2908364	2908365	2908366
Sample Reference				TP07	TP08	WS05	WS06	WS08
Sample Number				None Supplied				
Depth (m)				0.70	0.10	0.10	2.90	0.40
Date Sampled				01/12/2023	01/12/2023	30/11/2023	30/11/2023	01/12/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)								
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	-
Dibenz(a,h)anthracene	mg/kg 0.05 MCERTS			-	-	-	-	-
enzo(ghi)perylene mg/kg 0.05 MCERTS			-	-	-	-	-	

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Lab Sample Number	2908367			
Sample Reference	WS10			
Sample Number	None Supplied			
Depth (m)	0.20			
Date Sampled	01/12/2023			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	-
Moisture Content	%	0.01	NONE	-
Total mass of sample received	kg	0.001	NONE	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	SSZ

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	-
Total Cyanide	mg/kg	1	MCERTS	-
Free Cyanide	mg/kg	1	MCERTS	-
Thiocyanate as SCN	mg/kg	5	NONE	-
Total Sulphate as SO4	mg/kg	50	MCERTS	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-
Sulphide	mg/kg	1	MCERTS	-
Organic Matter (automated)	%	0.1	MCERTS	-

Total Phenols

	Total Phenols (monohydric)	mg/kg	1	MCERTS	-
--	----------------------------	-------	---	--------	---

Speciated PAHs

mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	ISO 17025	-
mg/kg	0.05	ISO 17025	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
mg/kg	0.05	MCERTS	-
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 0.05 mg/kg 0.05	mg/kg 0.05 MCERTS mg/kg 0.05 ISO 17025 mg/kg 0.05 MCERTS mg/kg 0.05 MCERTS

Total PAH

Speciated Total EPA-16 PAHs mg/kg 0.8 ISO 17025

Lab Sample Number	2908367			
Sample Reference	WS10			
Sample Number	None Supplied			
Depth (m)	0.20			
Date Sampled	01/12/2023			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)				
Heavy Metals / Metalloids				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-
Boron (water soluble)	mg/kg	0.2	MCERTS	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-

Monoaromatics & Oxygenates

Benzene	µg/kg	5	MCERTS	-
Toluene	µg/kg	5	MCERTS	-
Ethylbenzene	µg/kg	5	MCERTS	-
p & m-xylene	µg/kg	5	MCERTS	-
o-xylene	µg/kg	5	MCERTS	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC21 - EC35 $_{\text{EH_CU+ID_AL}}$ TPH-CWG - Aliphatic (EC5 - EC35) $_{\text{EH_CU+HS_1D_AL}}$

TPH C10 - C40 _{EH_CU_1D_TOTAL}	mg/kg	10	MCERTS	-
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.02	NONE	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	-

mg/kg

mg/kg

8

10

MCERTS

NONE

TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-

Lab Sample Number	2908367			
Sample Reference		WS10		
Sample Number				None Supplied
Depth (m)				0.20
Date Sampled				01/12/2023
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
VOCs				
Chloromethane	µg/kg	5	ISO 17025	-
Chloroethane	µg/kg	5	NONE	-
Bromomethane	µg/kg	5	ISO 17025	-
Vinyl Chloride	µg/kg	5	NONE	-
Trichlorofluoromethane	µg/kg	5	NONE	-
1,1-dichloroethene	µg/kg	5	NONE	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	5	NONE	-
Trans 1,2-dichloroethylene	µg/kg	5	NONE	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-
1,1-dichloroethane	µg/kg	5	ISO 17025	-
2,2-Dichloropropane	µg/kg	5	ISO 17025	-
Chloroform	µg/kg	5	NONE	-
1,1,1-Trichloroethane	µg/kg	5	ISO 17025	-
1,2-dichloroethane	µg/kg	5	ISO 17025	-
1,1-Dichloropropene	µg/kg	5	ISO 17025	-
Cis-1,2-dichloroethene	µg/kg	5	ISO 17025	-
Benzene	µg/kg	5	MCERTS	-
Carbontetrachloride	µg/kg	5	NONE	-
1,2-dichloropropane	µg/kg	5	ISO 17025	-
Trichloroethene	µg/kg	5	ISO 17025	-
Dibromomethane	µg/kg	5	ISO 17025	-
Bromodichloromethane	µg/kg	5	ISO 17025	-
Cis-1,3-dichloropropene	µg/kg	5	ISO 17025	-
Trans-1,3-dichloropropene	µg/kg	5 5	ISO 17025 MCERTS	-
Toluene	µg/kg	5	ISO 17025	-
1,1,2-Trichloroethane	µg/kg µg/kg	5	ISO 17025 ISO 17025	-
1,3-Dichloropropane Dibromochloromethane	µg/kg	5	ISO 17025	-
Tetrachloroethene	µg/kg	5	NONE	-
1.2-Dibromoethane	µg/kg	5	ISO 17025	-
Chlorobenzene	µg/kg	5	ISO 17025	-
1,1,1,2-Tetrachloroethane	µg/kg	5	ISO 17025	-
Ethylbenzene	µg/kg	5	MCERTS	-
p & m-xylene	µg/kg	5	MCERTS	-
Styrene	µg/kg	5	ISO 17025	-
Bromoform	µg/kg	5	NONE	-
o-xylene	µg/kg	5	MCERTS	-
Isopropylbenzene	µg/kg	5	ISO 17025	-
1,1,2,2-Tetrachloroethane	µg/kg	5	ISO 17025	-
	µg/kg	5	NONE	-
Bromobenzene			ISO 17025	-
Bromobenzene N-Propylbenzene	µg/kg	5	150 17025	
	μg/kg μg/kg	5 5	ISO 17025 ISO 17025	-
N-Propylbenzene				-
N-Propylbenzene 2-Chlorotoluene	µg/kg	5	ISO 17025	
N-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene	μg/kg μg/kg	5 5	ISO 17025 ISO 17025	-
N-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/kg μg/kg μg/kg	5 5 5	ISO 17025 ISO 17025 ISO 17025	-
N-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene Tert-Butylbenzene	μg/kg μg/kg μg/kg μg/kg	5 5 5 5	ISO 17025 ISO 17025 ISO 17025 ISO 17025	-
N-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene Tert-Butylbenzene 1,2,4-Trimethylbenzene	μg/kg μg/kg μg/kg μg/kg μg/kg	5 5 5 5 5 5	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	
N-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene Tert-Butylbenzene 1,2,4-Trimethylbenzene Sec-Butylbenzene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	5 5 5 5 5 5 5 5 5 5	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	
N-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene Tert-Butylbenzene 1,2,4-Trimethylbenzene Sec-Butylbenzene 1,3-dichlorobenzene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	5 5 5 5 5 5 5 5	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025	- - - - - -

Environmental Science

Lab Sample Number	2908367			
Sample Reference	WS10			
Sample Number	None Supplied			
Depth (m)	0.20			
Date Sampled	01/12/2023			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Butylbenzene	µg/kg	5	NONE	-
1,2-Dibromo-3-chloropropane	µg/kg	5	ISO 17025	-
1,2,4-Trichlorobenzene	µg/kg	5	ISO 17025	-
Hexachlorobutadiene	µg/kg	5	NONE	-
1,2,3-Trichlorobenzene	µg/kg	5	ISO 17025	-

Lab Sample Number	2908367			
Sample Reference				WS10
Sample Number				None Supplied
Depth (m)				0.20
Date Sampled				01/12/2023
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
SVOCs				
Aniline	mg/kg	0.1	NONE	-
Phenol	mg/kg	0.2	ISO 17025	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-
2-Methylphenol	mg/kg	0.3	MCERTS	-
Hexachloroethane	mg/kg	0.05	ISO 17025	-
Nitrobenzene	mg/kg	0.3	MCERTS	-
4-Methylphenol	mg/kg	0.2	NONE	-
Isophorone	mg/kg	0.2	MCERTS	-
2-Nitrophenol	mg/kg	0.3	NONE	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-
Naphthalene	mg/kg	0.05	MCERTS	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-
4-Chloroaniline	mg/kg	0.1	NONE	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	-
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-
2,6-Dinitrotoluene	mg/kg	0.1	NONE	-
Acenaphthylene	mg/kg	0.05	MCERTS	-
Acenaphthene	mg/kg	0.05	MCERTS	-
2,4-Dinitrotoluene	mg/kg	0.2	NONE	-
Dibenzofuran	mg/kg	0.2	MCERTS	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-
4-Nitroaniline	mg/kg	0.2	NONE	-
Fluorene	mg/kg	0.05	MCERTS	-
Azobenzene	mg/kg	0.3	NONE	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-
Hexachlorobenzene	mg/kg	0.3	MCERTS MCERTS	-
Phenanthrene	mg/kg mg/kg	0.05	MCERTS	-
Anthracene	mg/kg	0.05	MCERTS	-
Carbazole	mg/kg mg/kg	0.3	NONE	-
Dibutyl phthalate	mg/kg	0.2	NONE	-
Anthraquinone	mg/kg	0.05	MCERTS	-
Fluoranthene	mg/kg	0.05	MCERTS	-
Pyrene Butyl benzyl obthalate	mg/kg	0.03	NONE	-
Butyl benzyl phthalate	mg/kg	0.05	MCERTS	-
Benzo(a)anthracene Chrysene	mg/kg	0.05	MCERTS	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-
	119/19	0.05	100 17025	

Environmental Science

Lab Sample Number	2908367			
Sample Reference	WS10			
Sample Number	None Supplied			
Depth (m)	0.20			
Date Sampled	01/12/2023			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2908352	TP02	None Supplied	0.6	Light brown clay and sand with gravel.
2908353	TP02	None Supplied	1	Brown clay and sand with gravel.
2908354	TP03	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
2908355	TP03	None Supplied	1.4	Brown clay and sand with gravel.
2908356	TP04	None Supplied	0.6	Brown sand with gravel.
2908357	TP05	None Supplied	0.3	Brown sand with gravel.
2908358	TP05	None Supplied	2	Brown clay and sand with gravel.
2908360	TP06	None Supplied	0.7	Light brown clay and sand with gravel.
2908362	TP07	None Supplied	0.7	Brown clay and sand with gravel.
2908363	TP08	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
2908364	WS05	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
2908365	WS06	None Supplied	2.9	Brown clay and sand with gravel.
2908366	WS08	None Supplied	0.4	Brown sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Refer to CoA for analyte specific accreditation.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in water followed by acidification followed by addition of ferric nitrate followed by discrete analyser (spectrophotometer).	In-house method	L082-PL	D	NONE
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC- MS.Refer to CoA for analyte specific accreditation.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260. Refer to CoA for analyte specific accreditation	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID. Refer to CoA for band specific accreditation.	In-house method with silica gel split/clean up.	L088/76-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis.Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID		Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
TP02	None Supplied	S	2908353	с	Free cyanide in soil	L080-PL	с
TP02	None Supplied	S	2908353	с	Sulphide in soil	L010-PL	с
TP02	None Supplied	S	2908353	с	Total cyanide in soil	L080-PL	с
TP03	None Supplied	S	2908355	с	Free cyanide in soil	L080-PL	с
TP03	None Supplied	S	2908355	с	Sulphide in soil	L010-PL	с
TP03	None Supplied	S	2908355	с	Total cyanide in soil	L080-PL	с
TP05	None Supplied	S	2908358	с	Free cyanide in soil	L080-PL	с
TP05	None Supplied	S	2908358	с	Sulphide in soil	L010-PL	с
TP05	None Supplied	S	2908358	с	Total cyanide in soil	L080-PL	с
TP08	None Supplied	S	2908363	с	Free cyanide in soil	L080-PL	с
TP08	None Supplied	S	2908363	с	Sulphide in soil	L010-PL	с
TP08	None Supplied	S	2908363	с	Total cyanide in soil	L080-PL	с
WS05	None Supplied	S	2908364	с	Free cyanide in soil	L080-PL	с
WS05	None Supplied	S	2908364	с	Sulphide in soil	L010-PL	с
WS05	None Supplied	S	2908364	с	Total cyanide in soil	L080-PL	с
WS08	None Supplied	S	2908366	с	Free cyanide in soil	L080-PL	с
WS08	None Supplied	S	2908366	с	Sulphide in soil	L010-PL	с
WS08	None Supplied	S	2908366	с	Total cyanide in soil	L080-PL	с

t: 01872 560200

f: 01872 560826

e: consultancy@wheal-jane.co.uk

Analytical Report Number : 24-78126

Project / Site name:	Boscawen Park	Samples received on:	13/12/2023
Your job number:	21757	Samples instructed on/ Analysis started on:	15/01/2024
Your order number:	21757	Analysis completed by:	05/02/2024
Report Issue Number:	1	Report issued on:	05/02/2024
Samples Analysed:	4 soil samples		

Durado

Signed:

soils

Joanna Wawrzeczko Senior Reporting Specialist For & on behalf of i2 Analytical Ltd.

- 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are	only valid when	accompanied by	this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

E ies of reports are only valid w en accompanie

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Thomas Gibson Wheal Jane Services Old Mine Offices Wheal Jane Baldhu Truro Cornwall TR3 6EE

				2927658	2927659	2927660	2927661
Sample Reference				TP02	TP03	TP05	TP07
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.60	1.40	0.30	0.70		
Date Sampled				30/11/2023	30/11/2023	30/11/2023	01/12/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	25	24	29	21
Stone Content							
	%	0.01	NONE	12	36	25	13
Moisture Content Total mass of sample received	% kg	0.01	NONE NONE	12 0.9	36 0.7	25 0.7	13 0.7
Moisture Content			-			_	-
Moisture Content Total mass of sample received Heavy Metals / Metalloids	kg	0.001	NONE	0.9	0.7	0.7	0.7
Moisture Content Total mass of sample received Heavy Metals / Metalloids Arsenic (aqua regia extractable) PBET Results (Bioaccessibile Fraction)	kg	0.001	NONE	0.9	0.7	0.7	0.7
Moisture Content Total mass of sample received Heavy Metals / Metalloids Arsenic (aqua regia extractable)	kg mg/kg	0.001	NONE	0.9 32	0.7	0.7	0.7
Moisture Content Total mass of sample received Heavy Metals / Metalloids Arsenic (aqua regia extractable) PBET Results (Bioaccessibile Fraction) Arsenic (Stomach)	kg mg/kg	0.001	NONE MCERTS NONE	0.9 32 0.5	0.7 260 0.5	0.7 130 < 0.5	0.7 200 < 0.5
Moisture Content Total mass of sample received Heavy Metals / Metalloids Arsenic (aqua regia extractable) PBET Results (Bioaccessibile Fraction) Arsenic (Stomach) Arsenic (Intestine 1)	kg mg/kg	0.001 1 0.5 0.5	NONE MCERTS NONE NONE	0.9 32 0.5 < 0.5	0.7 260 0.5 1.6	0.7 130 < 0.5 1.7	0.7 200 < 0.5 0.5

 $\label{eq:U/S} U/S = Unsuitable \ Sample \quad I/S = \ Insufficient \ Sample \quad ND = Not \ detected$

Analytical Report Number : 24-78126 Project / Site name: Boscawen Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2927658	TP02	None Supplied	0.6	Light brown clay and sand with gravel.
2927659	TP03	None Supplied	1.4	Brown clay and sand with gravel.
2927660	TP05	None Supplied	0.3	Brown sand with gravel.
2927661	TP07	None Supplied	0.7	Brown clay and sand with gravel.

Analytical Report Number : 24-78126 Project / Site name: Boscawen Park

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
РВЕТ	In House Method	In house method based on Ruby et.al.		D	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

APPENDIX D

CLEA Statistical Analysis

Environment Agency
-

CLEA Software Version 1.071		Repo	rt generated	8-Feb-24										Page 2	of 11	
Environment Agency												Apply Top	2 Approad	ch to Produ	ice Group	
				1						- applied?	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	r <u>i</u> t	
	Assessn	nent Criterion	(mg kg ⁻¹)	Rati	o of ADE to	HCV	Saturation Limit (mg kg ⁻¹)	50%	rule?	Two	, ve	ť <	er ve	ace	lb fr	ţru
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg)	Oral	Inhal	Top .	U.G.	Roo	Tube	Herk	Shrub fruit	Tree fruit
1 Arsenic (C4SL adult)	6.35E+02	1.25E+03	NR	1.00	0.51	NR	NR	No	No	No	Yes	No	No	No	No	Yes
2	1			ļ												
3	_															
4				L												
5	1															
6																
7																
8																
9	1															
10																
11	1															
12																
13	1															
14																
15																
16																
17																
18																
19																
20																

CLEA Software Version 1.071		Repo	ort generated	8-Feb-24				Page 3 of 1	1							
Environment Agency												Apply Top	2 Approac	h to Produ	ice Group)
										applied?	regetables	vegetables	vegetables	us fruit	t l	
	Assess	ment Criterion	(mg kg ⁻¹)	Rat	io of ADE to	HCV		50%	rule?	Two		vege		Herbaceous	b fruit	fruit
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal	Top.	Green	Root	Tuber	Herb	Shrub	Tree
21																
22																
23																
24																
25																
26																
27																
28																
29																
30																

CLEA Software Version 1.07	' 1					Repo	ort generated			8-Feb-24							Page 4 of 1	1
Environment Agency		Soil Dis	tributio	n							Media	a Concentra	ations					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg⁻¹ FW	mg kg ⁻¹ FW
1 Arsenic (C4SL adult)	99.9	0.1	0.0	100.0	6.35E+02	NR	3.18E+02	7.63E-06	4.32E-06	0.00E+00	0.00E+00	0.00E+00	NA	NA	NA	NA	NA	NA
2																		
3																		
4																		
5																		
6	1																	
7	1		1															
8	ł		1															
9	1		ł															
10	1		1															
11	1		!															
12	1		İ	l														
13	1		1															
14	1		1															
15	1		1															
16	1	1	1		1													
17	1		1															
18			1															
19	1		İ															
20	1		1													1		

CLEA Software Version 1.0)71					Repo	ort generated			8-Feb-24							Page 5 of 1	1
Environment Agency		Soil Dis	stributio	n							Media	Concentra	tions					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	1	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg ⁻¹ FW	mg kg⁻¹ FW	mg kg ⁻¹ FW
21		1	1	1														
22 23			1								1							
23			1															
24				1														
25																		
26																		
27																		
28																		
29																		
30																		

CLEA Software Version 1.071					Repo	ort generated	8-Feb-24					Page 6	of 11		
Environment Agency		Avera	ige Daily Ex	cposure (m	g kg ⁻¹ bw c	lay ⁻¹)				Dist	ribution b	y Pathwa	y (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
1 Arsenic (C4SL adult)	2.86E-04	0.00E+00	1.42E-05	1.94E-06	0.00E+00	0.00E+00	0.00E+00	95.28	0.00	4.72	0.00	0.00	0.00	0.00	0.00
2															
3															
4															
5															1
6															
7															
8															
9															ļ
10	1														
11															1
12															
13															
14															
15															
16															
16 17															[!
18															
19															
20															

CLEA Software Version 1.0	71				Repo	ort generated	8-Feb-24					Page 7	of 11		
Environment Agency		Avera	age Daily Ex	(m	g kg⁻¹ bw d	day⁻¹)				Dis	tribution t	by Pathw	ay (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
21															
21 22 23								ļ				1			
23															
24															
25															
26								l				ł			
27															
28								ł							
												1			
29 30															

CLEA Software Version 1.071					Repo	t generated	8-Feb-24	Ļ							Page 8	of 11
Environment Agency		Oral Health Criteria Value (µg kg ⁻¹ BW day ⁻¹)	Allocation Hooth Category	imiaation reauti oneria value (µg kg ⁻¹ BW day ⁻¹)	Oral Mean Daily Intake (µg day ⁻¹)	Inhalation Mean Daily Intake (µg day ¹)	Air-water partition coefficient (K_{aw}) $(cm^3 cm^3)$	Coefficient of Diffusion in Air $(m^2 \ s^4)$	Coefficient of Diffusion in Water (m^2s^{1})	$\log K_{\infty} (cm^3 g^{-1})$	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
1 Arsenic (C4SL adult)	ID	0.3	ID	0.0038	NR	NR	NR	NR	NR	NR	NR	0.03	0.5	1	1	1
2																
3																
4																
5																
6																
7														1		
8																
9																
10																
10 11																
12																
13											1					
14 15														1		
15																
16																
17																
18																
19																
20																

CLEA Software Version 1	.071		Repo	ort generated	8-Feb-24	ļ							Page 9	of 11
Environment Agency	(ng kg ⁻¹ BW day ⁻¹)	Inhalation Health Criteria Value (µg kg ¹ BW day ¹)	Oral Mean Daily Intake (µg day ¹)	Inhalation Mean Daily Intake (µg day ⁻¹)	Air-water partition coefficient (K _{sw}) (cm ³ cm ³)	Coefficient of Diffusion in Air $({\mathfrak m}^2{\mathfrak s}^{1})$	Coefficient of Diffusion in Water $(m^2 \ {\rm s}^{-1})$	log K _{oc} (cm ³ g ⁻¹)	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
21 22 23														
22														
23														
24			1		1		1						1	
25														
26													1	
27			1	1	1								1	
28														
29				1	1	ļ	1			1		l	1	
30														

CLEA Software Version 1.071				Report generated	8-Feb-24				Page 10 of 11	
Environment Agency	Soli-to-water partition coefficient (cm ³ g ⁻¹)	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soli-to-plant concentration factor for green vegetables (mg gʻ blant DW or FW basis over mg gʻ DW soil)	Soli-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soil-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	
1 Arsenic (C4SL adult)	5.00E+02	NR	1.25E+06	0.00043 fw	0.0004 fw	0.00023 fw	0.00033 fw	0.0002 fw	0.0011 fw	1
2										
3										
4										1
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										

CLEA Software Version 1	1.071			Report generated	8-Feb-24				Page 11 of 11
Environment Agency	Soli-to-water partition coefficient (cm ³ g ⁻¹)	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soli-to-plant concentration factor for green vegetables (mg gr ¹ plant DW or FW basis over mg gr ¹ DW soli)	Soli-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	Soli-to-plant concentration factor for tuber vegetables (mg g ⁻¹ D/W or F/W basis over mg g ⁻¹ D/W soil)	Soli-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	Soli-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)
21									
22									
23									
24									
25									
26									
27									
28									
29									
30									

CLEA Softwa	re Version 1.071	Page 1 of 11
Report generated	08-Feb-24	
Report title	Boscawen Park	Environment Agency
Created by		
RESULTS		

CLEA	Software Version 1.071		Repor	t generated	8-Feb-24										Page 2	of 11	
S	Environment Agency												Apply Top	2 Approac	h to Produ	ice Group	
											applied?	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	ŧ	
		Assessm	nent Criterion	(mg kg ⁻¹)	Rati	o of ADE to	HCV	Saturation Limit (mg kg ⁻¹)	50%	rule?	Two	en ve	t veg	er veç	Jacec	Shrub fruit	Tree fruit
		oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg)	Oral	Inhal	Top	Gree	Roo	Tube	Hert	Shr	Tree
1	Arsenic (C4SL child)	3.71E+03	1.91E+04	NR	1.00	0.19	NR	NR	No	No	Yes	Yes	No	No	No	No	Yes
2	Arsenic (C4SL adult)	3.71E+03	8.36E+03	NR	1.00	0.44	NR	NR	No	No	Yes	Yes	No	No	No	No	Yes
3																	
4																	
5																	
6																	
7																	
8																	
9																	
10											-						
11																	
12																	
13																	
14																	
15																	
16																	
17																	
18																	
19																	
20																	

CLEA Software Version 1.071		Repo	ort generated	8-Feb-24				Page 3 of 1	1							
Environment Agency												Apply Top	2 Approac	h to Produ	ice Group)
										applied?	egetables	Root vegetables	vegetables	Herbaceous fruit	it	
	Assess	ment Criterion	(mg kg ⁻¹)	Rat	io of ADE to	HCV		50%	rule?	Two	i >	veg	er ve	ace	b fr	fruit
	oral	inhalation	combined	oral	inhalation	combined	Saturation Limit (mg kg ⁻¹)	Oral	Inhal	Top.	Green	Root	Tuber	Herb	Shrub fruit	Tree
21																
22																
23																
24																
25																
26																
27					1											
28																
29					1											
30																

CLEA Software Version 1.07	1					Repo	ort generated			8-Feb-24							Page 4 of 1	1
Environment Agency		Soil Dis	tributio	n							Media	a Concentr	ations					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg kg⁻¹ FW	mg kg⁻¹ FW	mg kg⁻¹ FW	mg kg ⁻¹ FW	mg kg⁻¹ FW	mg kg ⁻¹ FW
1 Arsenic (C4SL child)	99.9	0.1	0.0	100.0	3.71E+03	NR	NA	3.16E-05	1.35E-05	NA	0.00E+00	0.00E+00	NA	NA	NA	NA	NA	NA
2 Arsenic (C4SL adult)	99.9	0.1	0.0	100.0	3.71E+03	NR	NA	3.16E-05	1.35E-05	NA	0.00E+00	0.00E+00	NA	NA	NA	NA	NA	NA
3			1															
4																		
5			1															
6																		
7																		
8																		
9																		
10			i –															
11																		
12			1															
13	1																	
14																		
15																		
16																		
17																		
18																		
19	İ		1															
20	1																	

CLEA Software Version 1.0	71					Repo	ort generated			8-Feb-24							Page 5 of 1	1
Environment Agency		Soil Dis	tributio	n							Media	Concentra	tions					
	Sorbed	Dissolved	Vapour	Total	Soil	Soil gas	Indoor Dust	Outdoor dust at 0.8m	Outdoor dust at 1.6m	Indoor Vapour	Outdoor vapour at 0.8m	Outdoor vapour at 1.6m	Green vegetables	Root vegetables	Tuber vegetables	Herbaceous fruit	Shrub fruit	Tree fruit
	%	%	%	%	mg kg ⁻¹	mg m ⁻³	mg kg ⁻¹	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³	mg m ⁻³			mg kg⁻¹ FW	mg kg ⁻¹ FW	mg kg⁻¹ FW	mg kg ⁻¹ FW
21																		
22 23 24																		
23																		
24																		
25																		
26																		
27																		
28																		
29			1															
30			ł															

CLEA Software Version 1.071					Repo	ort generated	8-Feb-24					Page 6	of 11		
Environment Agency	Average Daily Exposure (mg kg ⁻¹ bw day ⁻¹) Distribution												ıy (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
1 Arsenic (C4SL child)	1.09E-04	0.00E+00	1.91E-04	1.69E-06	0.00E+00	0.00E+00	0.00E+00	36.43	0.00	63.57	0.00	0.00	0.00	0.00	0.00
2 Arsenic (C4SL adult)	1.09E-04	0.00E+00	1.91E-04	1.69E-06	0.00E+00	0.00E+00	0.00E+00	36.43	0.00	63.57	0.00	0.00	0.00	0.00	0.00
3															
4															
5															
6															
7															
8															
9															
10															
11												1	1		
12															
13															
14															
15															
16															
17															
18															
19															
20															1

CLEA Software Version 1.07	71				Repo	ort generated	8-Feb-24					Page 7	of 11		
Environment Agency		Avera	ige Daily Ex	φosure (m	g kg ⁻¹ bw c	day⁻¹)				Dis	tribution I	oy Pathwa	ay (%)		
	Direct soil ingestion	Consumption of homegrown produce and attached soil	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour	Background (oral)	Background (inhalation)	Direct soil ingestion	Consumption of homegrown produce	Dermal contact with soil and dust	Inhalation of dust	Inhalation of vapour (indoor)	Inhalation of vapour (outdoor)	Background (oral)	Background (inhalation)
21															
21 22 23												1			
23															
24												1			
25															
26								1	1			1			
27															
28												1			
29									1						
30												1			

CLEA Software Version 1.071					Repo	rt generated	8-Feb-24	Ļ							Page 8	of 11
Environment Agency		Oral Health Criteria Value (µg kg ⁻¹ ВW day ⁻¹)	Allocations Hooth Category	imiaation reauti oneria value (µg kg ⁻¹ BW day ⁻¹)	Oral Mean Daily Intake (µg day ⁻¹)	Inhalation Mean Daily Intake (µg day ¹)	Air-water partition coefficient (K_{aw}) $(cm^3 cm^3)$	Coefficient of Diffusion in Air $(m^2 \ s^4)$	Coefficient of Diffusion in Water $(m^2 \ s^{-1})$	log K _{oc} (cm³ g ⁻¹)	log K_{∞} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bicavailability via dust inhalation (unitless)
1 Arsenic (C4SL child)	ID	0.3	ID	0.0087	NR	NR	NR	NR	NR	NR	NR	0.03	0.5	1	0.017	1
2 Arsenic (C4SL adult)	ID	0.3	ID	0.0038	NR	NR	NR	NR	NR	NR	NR	0.03	0.5	1	0.017	1
3																
4																
5																
6																
7																
8																
9																i i
10 11																
12																
13																
14 15																
16																
17																
18																
19										ļ						
20																

CLEA Software Version 1.	071		Repo	rt generated	8-Feb-24	ļ							Page 9	of 11
Environment Agency	Oral Health Criteria Value (µg kg ¹ BW day ⁻¹)	Inhalation Health Criteria Value (µg kg¹ BW day ¹)	Oral Mean Daily Intake (µg day ⁻¹)	Inhalation Mean Daily Intake (µg day ⁻¹)	Air-water partition coefficient (K _{aw}) (cm ³ cm ³)	Coefficient of Diffusion in Air $(m^2 \ s^{-1})$	Coefficient of Diffusion in Water $(m^2 \ {\rm s}^{-1})$	$\log K_{\infty} (cm^3 g^{-1})$	log K _{ow} (dimensionless)	Dermal Absorption Fraction (dimensionless)	Soil-to-dust transport factor (g g ⁻¹ DW)	Sub-surface soil to indoor air correction factor (dimensionless)	Relative bioavailability via soil ingestion (unitless)	Relative bioavailability via dust inhalation (unitless)
21 22 23														
22			1											
23														
24														
25														
26														
27			ł										1	
28			1											
29			1	l	1		l			1		l	1	
30														

CLEA Software Version 1.071				Report generated	8-Feb-24				Page 10 of 11	
Environment Agency	Soli-to-water partition coefficient (cm ³ g ⁻¹)	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soli-to-plant concentration factor for green vegetables (mg gʻ plant DW or FW basis over mg gʻ DW soil)	Soll-to-plant concentration factor for root vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration Soli-to-plant concentration f factor for tuber vegetables (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	Soli-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	Soil-to-plant concentration factor for tree fruit (mg g ¹ plant DW or FW basis over mg g ¹ DW soil)	
1 Arsenic (C4SL child)	5.00E+02	NR	1.25E+06	0.00043 fw	0.0004 fw	0.00023 fw	0.00033 fw	0.0002 fw	0.0011 fw	
2 Arsenic (C4SL adult)	5.00E+02	NR	1.25E+06	0.00043 fw	0.0004 fw	0.00023 fw	0.00033 fw	0.0002 fw	0.0011 fw	
3										
4										
5										
6										
7	1									
8										
9										
10										
11	1									
12										
13										
14										
15										
16										
17										
18										
19										
20										

CLEA Software Version 1.0	71			Report generated	8-Feb-24				Page 11 of 11	
Environment Agency	Soli-to-water partition coefficient $(cm^3 g^{-1})$	Vapour pressure (Pa)	Water solubility (mg L ⁻¹)	Soli-to-plant concentration factor for green vegetables (mg g ¹ plant DW or FW basis over mg g ¹ DW soli)	Soll-to-plant concentration Soll-to-plant concentration factor for root vegetables (mg g¹ plant DW or FW basis over mg g¹ DW soll)	Soli-to-plant concentration factor for tuber vegetables (mg g ⁻¹ D/W or F/W basis over mg g ⁻¹ D/W soil)	Soli-to-plant concentration factor for herbaceous fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for shrub fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soil)	Soli-to-plant concentration factor for tree fruit (mg g ⁻¹ plant DW or FW basis over mg g ⁻¹ DW soli)	
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										

APPENDIX E

3G pitch Ground Investigation Specifications

2.1	Framework Ground Investigation (Hand Pits)	Provide a Geotechnical Survey to determine subsoil conditions which includes hand pits to confirm soil profile, permeability tests, laboratory analysis of soil, CBR ratings etc in sufficient detail and location to allow design of pitch base, or provide recommendations for further works where ground conditions are deemed unsuitable, task to include:
		 Ground investigation by trial pitting to include 5No. hand pits to target depth of 1.2m depth bgl and TRL-DCP testing (assumed 5) to inform insitu CBR (assumes no surfacing and reinstatement with arisings only) Indicative infiltration testing in one or two hand pit positions Laboratory testing to include 2No. PSD or Plasticity index and 2No. BRE SD1 Suite for concrete classification Reporting to provide overview of readily available desk study information, factual findings from ground investigation and interpretation to provide floodlight foundation bearing capacity, infiltration potential, CBR for design and/or advice on abnormal ground conditions with recommendations for further investigations.
2.2	Framework Ground Investigation (Driven Tube Sampling)	Investigation to be provided where pre-site review indicates that the hand dug trial pit investigation will be unlikely to provide sufficient information to allow design to proceed. Includes preliminary UXO assessment for investigation works only. Provide a Geotechnical Survey to determine subsoil conditions which includes driven tubes to confirm soil profile, permeability tests, laboratory analysis of soil, CBR ratings etc in sufficient detail and location to allow design of pitch base, or provide recommendations for further works where ground conditions are deemed unsuitable, task to include: • Ground investigation by driven tube sampling to include 5No. driven tubes to excavate to depths up to 5m and Dynamic Probe test to assess soil consistency to depths up to 10m and TRL-DCP testing (assumed 5) to inform insitu CBR (assumes no surfacing and reinstatement with arisings only) • Indicative infiltration testing in one or two driven tube pit positions • To account for variability in the soil profile with depth we have allowed an overall budget for laboratory testing, this will generally equate to 3 no. classification tests to assist in pitch/foundation design, and 3 no. sulphate testing for concrete classification • Reporting to provide overview of readily available desk study information, factual findings from ground investigation and interpretation to provide floodlight foundation bearing capacity, infiltration potential, CBR for design and/or advice on abnormal ground conditions with recommendations for further investigations.

The Phased Approach to Land Contamination

As set out in Contaminated Land Report 11 - Model Procedures for the Management of Land Contamination. Environment Agency Guidelines

