This is a published notice on the Find a Tender service: <a href="https://www.find-tender.service.gov.uk/Notice/030828-2023">https://www.find-tender.service.gov.uk/Notice/030828-2023</a>

#### Contract

# 3D Bioprinter Supply and Installation

**Aston University** 

F03: Contract award notice

Notice identifier: 2023/S 000-030828

Procurement identifier (OCID): ocds-h6vhtk-040408

Published 18 October 2023, 6:23pm

# **Section I: Contracting authority**

# I.1) Name and addresses

Aston University

Aston Triangle

**BIRMINGHAM** 

B47ET

#### Contact

Jacob Rankine

#### **Email**

j.rankine@aston.ac.uk

#### **Telephone**

+44 1212044562

## Country

**United Kingdom** 

Region code

UKG31 - Birmingham

**Companies House** 

RC000904

Internet address(es)

Main address

https://www.aston.ac.uk

# I.4) Type of the contracting authority

Body governed by public law

# I.5) Main activity

Education

# **Section II: Object**

# II.1) Scope of the procurement

II.1.1) Title

3D Bioprinter Supply and Installation

Reference number

864

# II.1.2) Main CPV code

• 38000000 - Laboratory, optical and precision equipments (excl. glasses)

# II.1.3) Type of contract

Supplies

#### II.1.4) Short description

VEAT (Voluntary Ex ante Transparency) notice previously published - Direct Award to Scienion (UK) Limited for the supply and installation of a specialist 3D Bioprinter.

#### II.1.6) Information about lots

This contract is divided into lots: No

### II.1.7) Total value of the procurement (excluding VAT)

Value excluding VAT: £600,000

## II.2) Description

#### II.2.3) Place of performance

**NUTS** codes

• UKG31 - Birmingham

#### II.2.4) Description of the procurement

Aston University intends to award the contract without a call for competition in accordance with the Public Contracts Regulations 2015 ((32.2(b) ii). The contract duration is expected to be October 2023 to September 2024 as per the warranty period.

In order to achieve our objectives, the University requires the following:

- Ability to control the voxel size along one scanning plane using synchronized laser power modulation at high speeds. Necessary to achieve smooth surfaces for micro fluidic channels on much higher speeds for this high resolution compared to any other technique.
- Method of printing such as Dip-in Laser Lithography (DiLL), where the resin is simultaneously used as an immersion medium and written on the same side of the substrate as the imaging objective. This is necessary to eliminate height restrictions on printed structures. Some users plan structures of ~20mm height.
- Printing on non-transparent and non-planar surfaces in addition to planar transparent. This is necessary for many major users particularly those printing on CMOS chips, semiconductors and electronic interface components. Also users will require ability to print into commercially available microfluidic chips with channels and cell perfusion wells with range of ~1200-1700  $\mu$ m depth.

- Upright printing platform (i.e. the objective approaches from above) is necessary for many planned user printing at Aston. It is ideal for wafer-scale and batch production, and enabling of large height structures.
- Availability of a wide range of materials to be used with the system, such as biocompatible low fluorescence material printing, glass structure printing, and biocompatible gels. Aston user experience with materials important for rapid and confident user uptake.
- Features of the equipment required for use in the Aston multiuser facility. These include a sound pressure level (LpA) below 40 dB(A), and remote access and monitoring of prints. Touchscreen user interface to allow intuitive operation and increase usability facilitating maximal usage.
- Additionally, features that enable rapid setup and calibration, with writing strategies to enable high throughput of large structures. These are necessary for the efficiency of Aston multiuser facility and approaches such as rapid prototyping.
- Short lead time to meet requirement of funding usage.

The University will not enter the proposed contract before 10 October 2023.

#### II.2.5) Award criteria

Price

#### II.2.11) Information about options

Options: No

# Section IV. Procedure

## **IV.1) Description**

#### IV.1.1) Type of procedure

Award of a contract without prior publication of a call for competition in the cases listed below

- The services can be provided only by a particular economic operator for the following reason:
  - o absence of competition for technical reasons

#### Explanation:

In order to achieve our objectives, the University requires the following:

- Ability to control the voxel size along one scanning plane using synchronized laser power modulation at high speeds. Necessary to achieve smooth surfaces for micro fluidic channels on much higher speeds for this high resolution compared to any other technique.
- Method of printing such as Dip-in Laser Lithography (DiLL), where the resin is simultaneously used as an immersion medium and written on the same side of the substrate as the imaging objective. This is necessary to eliminate height restrictions on printed structures. Some users plan structures of ~20mm height.
- Printing on non-transparent and non-planar surfaces in addition to planar transparent. This is necessary for many major users particularly those printing on CMOS chips, semiconductors and electronic interface components. Also users will require ability to print into commercially available microfluidic chips with channels and cell perfusion wells with range of ~1200-1700  $\mu m$  depth.
- Upright printing platform (i.e. the objective approaches from above) is necessary for many planned user printing at Aston. It is ideal for wafer-scale and batch production, and enabling of large height structures.
- Availability of a wide range of materials to be used with the system, such as biocompatible low fluorescence material printing, glass structure printing, and biocompatible gels. Aston user experience with materials important for rapid and confident user uptake.
- Features of the equipment required for use in the Aston multiuser facility. These include

a sound pressure level (LpA) below 40 dB(A), and remote access and monitoring of prints. Touchscreen user interface to allow intuitive operation and increase usability facilitating maximal usage.

- Additionally, features that enable rapid setup and calibration, with writing strategies to enable high throughput of large structures. These are necessary for the efficiency of Aston multiuser facility and approaches such as rapid prototyping.
- Short lead time to meet requirement of funding usage.

#### IV.1.8) Information about the Government Procurement Agreement (GPA)

The procurement is covered by the Government Procurement Agreement: No

## IV.2) Administrative information

### IV.2.1) Previous publication concerning this procedure

Notice number: 2023/S 000-028433

# Section V. Award of contract

A contract/lot is awarded: Yes

## V.2) Award of contract

## V.2.1) Date of conclusion of the contract

18 October 2023

# V.2.2) Information about tenders

Number of tenders received: 1

The contract has been awarded to a group of economic operators: No

### V.2.3) Name and address of the contractor

Scienion (UK) Limited

Hove

Country

**United Kingdom** 

**NUTS** code

• UKJ21 - Brighton and Hove

Companies House

11838025

The contractor is an SME

No

# V.2.4) Information on value of contract/lot (excluding VAT)

Total value of the contract/lot: £600,000

# Section VI. Complementary information

# VI.4) Procedures for review

VI.4.1) Review body

Aston University

Birmingham

Country

United Kingdom