This is a published notice on the Find a Tender service: https://www.find-tender.service.gov.uk/Notice/015682-2021

Planning

Shielding Design

United Kingdom Atomic Energy Authority

F01: Prior information notice

Prior information only

Notice identifier: 2021/S 000-015682

Procurement identifier (OCID): ocds-h6vhtk-02c4b4

Published 7 July 2021, 12:38pm

Section I: Contracting authority

I.1) Name and addresses

United Kingdom Atomic Energy Authority

Culham Science Centre

Abingdon

OX14 3DB

Contact

Louise Daly

Email

Louise.Daly@ukaea.uk

Country

United Kingdom

NUTS code

UKJ14 - Oxfordshire

National registration number

N/A

Internet address(es)

Main address

http://www.gov.uk/government/organisations/uk-atomic-energy-authority

Buyer's address

https://uk.eu-supply.com/ctm/Company/CompanyInformation/Index/72814

I.3) Communication

The procurement documents are available for unrestricted and full direct access, free of charge, at

https://uk.eu-supply.com/app/rfq/rwlentrance_s.asp?PID=38673&B=UK

Additional information can be obtained from the above-mentioned address

I.4) Type of the contracting authority

Body governed by public law

I.5) Main activity

Other activity

Fusion Research

Section II: Object

II.1) Scope of the procurement

II.1.1) Title

Shielding Design

Reference number

T/LD122/21

II.1.2) Main CPV code

• 71320000 - Engineering design services

II.1.3) Type of contract

Services

II.1.4) Short description

The STEP design will include superconducting magnets within its center column which will be subjected to large high-energy neutron fluxes from the plasma. If unprotected, the neutron bombardment of the superconducting magnets results in an operating lifetime of only a few hours. To address this, an in-board neutron shield is needed to reduce the neutron flux reaching the superconducting magnets and prolong their operational lifetime to a viable level.

II.1.5) Estimated total value

Value excluding VAT: £500,000

II.1.6) Information about lots

This contract is divided into lots: No

II.2) Description

II.2.2) Additional CPV code(s)

- 72244000 Prototyping services
- 73200000 Research and development consultancy services

II.2.3) Place of performance

NUTS codes

• UKJ14 - Oxfordshire

II.2.4) Description of the procurement

The STEP design will include superconducting magnets within its center column which will be subjected to large high-energy neutron fluxes from the plasma. If unprotected, the neutron bombardment of the superconducting magnets results in an operating lifetime of only a few hours. To address this, an in-board neutron shield is needed to reduce the neutron flux reaching the superconducting magnets and prolong their operational lifetime to a viable level.

II.3) Estimated date of publication of contract notice

1 December 2021

Section IV. Procedure

IV.1) Description

IV.1.8) Information about the Government Procurement Agreement (GPA)

The procurement is covered by the Government Procurement Agreement: Yes