This is a published notice on the Find a Tender service: https://www.find-tender.service.gov.uk/Notice/015374-2022 #### Contract ## **Proton range verification detectors** The Christie NHS Foundation Trust F03: Contract award notice Notice identifier: 2022/S 000-015374 Procurement identifier (OCID): ocds-h6vhtk-030de2 Published 1 June 2022, 3:01pm ## **Section I: Contracting authority** ### I.1) Name and addresses The Christie NHS Foundation Trust The Christie NHS Foundation Trust, Wilmslow Road Manchester M20 4BX #### Contact Mr Chris Robson #### **Email** christopher.robson4@nhs.net #### **Telephone** +44 1614468531 ### Country **United Kingdom** #### **NUTS** code UKD3 - Greater Manchester ### Internet address(es) Main address https://www.christie.nhs.uk Buyer's address https://www.christie.nhs.uk ## I.4) Type of the contracting authority Body governed by public law ## I.5) Main activity Health ## **Section II: Object** ### II.1) Scope of the procurement #### II.1.1) Title Proton range verification detectors Reference number DN591219 #### II.1.2) Main CPV code • 38431000 - Detection apparatus #### II.1.3) Type of contract **Supplies** #### II.1.4) Short description The PRECISE proton therapy research group at the University of Manchester and the Christie NHS Foundation Trust is developing a system to verify range during proton beam therapy treatments. Range uncertainty is arguably one of the biggest challenges in proton therapy. Range uncertainty arises from a number of sources: imaging, dosimetry, stopping powers, however, the largest uncertainty is always the patient. Patient setup, highly heterogeneous tissue, implants, or bone/tissue interfaces as well as anatomical changes during treatment can all influence proton range and thus, treatment outcomes. The full potential of proton beam therapy, particularly when there are organs-at-risk in the vicinity of the tumour, cannot be exploited unless these uncertainties are reduced or mitigated. One possible method of determining proton range is through the detection of the prompt gamma-rays that are emitted naturally during therapy. It has been shown experimentally that the maximum intensity of these prompt gamma rays correlates well with the Bragg peak and end-of-range. By detecting these prompt gamma-rays and determining their origin the proton beam range could be established. The system being developed is based on an array of scintillator detectors coupled with an image reconstruction algorithm based on gamma-ray coincidences. The detectors of choice are LaBr3 scintillators which exhibit good energy and timing resolution for the detection of the high energy gamma-rays emitted. The typical gamma-ray energy range of interest is 2-8 MeV so large crystal, 38.1 mm (1.5") diameter and 50.8 mm (2") long, detectors are required in order to obtain full energy photo peaks. As the reconstruction algorithm utilises gamma-ray coincidences, the detectors need to have an energy resolution of 3.5% or less at 662 keV and a coincidence resolving time of 0.5 ns or less. Ideally we are also looking for the detectors to have an anode pulse rise time of 0.8 ns or less and an electron transit time of 16 ns or less. #### II.1.6) Information about lots This contract is divided into lots: No #### II.1.7) Total value of the procurement (excluding VAT) Value excluding VAT: £120,290 ### II.2) Description #### II.2.2) Additional CPV code(s) • 38431000 - Detection apparatus #### II.2.3) Place of performance **NUTS** codes UKD3 - Greater Manchester ### II.2.4) Description of the procurement The PRECISE proton therapy research group at the University of Manchester and the Christie NHS Foundation Trust is developing a system to verify range during proton beam therapy treatments. Range uncertainty is arguably one of the biggest challenges in proton therapy. Range uncertainty arises from a number of sources: imaging, dosimetry, stopping powers, however, the largest uncertainty is always the patient. Patient setup, highly heterogeneous tissue, implants, or bone/tissue interfaces as well as anatomical changes during treatment can all influence proton range and thus, treatment outcomes. The full potential of proton beam therapy, particularly when there are organs-at-risk in the vicinity of the tumour, cannot be exploited unless these uncertainties are reduced or mitigated. One possible method of determining proton range is through the detection of the prompt gamma-rays that are emitted naturally during therapy. It has been shown experimentally that the maximum intensity of these prompt gamma rays correlates well with the Bragg peak and end-of-range. By detecting these prompt gamma-rays and determining their origin the proton beam range could be established. The system being developed is based on an array of scintillator detectors coupled with an image reconstruction algorithm based on gamma-ray coincidences. The detectors of choice are LaBr3 scintillators which exhibit good energy and timing resolution for the detection of the high energy gamma-rays emitted. The typical gamma-ray energy range of interest is 2-8 MeV so large crystal, $38.1 \, \text{mm}$ (1.5") diameter and $50.8 \, \text{mm}$ (2") long, detectors are required in order to obtain full energy photo peaks. As the reconstruction algorithm utilises gamma-ray coincidences, the detectors need to have an energy resolution of 3.5% or less at $662 \, \text{keV}$ and a coincidence resolving time of $0.5 \, \text{ns}$ or less. Ideally we are also looking for the detectors to have an anode pulse rise time of $0.8 \, \text{ns}$ or less and an electron transit time of $16 \, \text{ns}$ or less. #### II.2.5) Award criteria Quality criterion - Name: Quality / Weighting: 70 Cost criterion - Name: Cost / Weighting: 30 #### II.2.11) Information about options Options: No #### II.2.13) Information about European Union Funds The procurement is related to a project and/or programme financed by European Union funds: No ### **Section IV. Procedure** ### IV.1) Description ### IV.1.1) Type of procedure Open procedure #### IV.1.8) Information about the Government Procurement Agreement (GPA) The procurement is covered by the Government Procurement Agreement: No ### IV.2) Administrative information #### IV.2.1) Previous publication concerning this procedure Notice number: <u>2022/S 000-001865</u> ### **Section V. Award of contract** #### **Contract No** 1 #### **Lot No** 1 A contract/lot is awarded: Yes ### V.2) Award of contract ### V.2.1) Date of conclusion of the contract 24 May 2022 ### V.2.2) Information about tenders Number of tenders received: 2 Number of tenders received from SMEs: 2 Number of tenders received from tenderers from other EU Member States: 0 Number of tenders received from tenderers from non-EU Member States: 0 Number of tenders received by electronic means: 2 The contract has been awarded to a group of economic operators: No ### V.2.3) Name and address of the contractor Mi-Net Technology Ltt 30 Summerleaze Road Maidenhead SL68EN Country **United Kingdom** NUTS code • UKD3 - Greater Manchester The contractor is an SME Yes ### V.2.4) Information on value of contract/lot (excluding VAT) Total value of the contract/lot: £120,290 # Section VI. Complementary information # VI.4) Procedures for review ## VI.4.1) Review body The Christie NHS Foundation Trust Manchester Country United Kingdom