This is a published notice on the Find a Tender service: <u>https://www.find-tender.service.gov.uk/Notice/010436-2024</u>

Tender

Procurement of a Cryogen Free Measurement System

University of Bristol

F02: Contract notice Notice identifier: 2024/S 000-010436 Procurement identifier (OCID): ocds-h6vhtk-044e9d Published 28 March 2024, 5:59pm

Section I: Contracting authority

I.1) Name and addresses

University of Bristol

4th Floor, Augustine's Courtyard, Orchard Lane

Bristol

BS1 5DS

Email

yi19222@bristol.ac.uk

Telephone

+44 01179289000

Country

United Kingdom

Region code

UK - United Kingdom

Internet address(es)

Main address

www.bristol.ac.uk

I.3) Communication

The procurement documents are available for unrestricted and full direct access, free of charge, at

https://tenders.bris.ac.uk/

Additional information can be obtained from the above-mentioned address

Tenders or requests to participate must be submitted electronically via

https://tenders.bris.ac.uk/

Tenders or requests to participate must be submitted to the above-mentioned address

I.4) Type of the contracting authority

Body governed by public law

I.5) Main activity

Education

Section II: Object

II.1) Scope of the procurement

II.1.1) Title

Procurement of a Cryogen Free Measurement System

Reference number

Lab-2402-073-PC_2869

II.1.2) Main CPV code

• 38540000 - Machines and apparatus for testing and measuring

II.1.3) Type of contract

Supplies

II.1.4) Short description

The equipment will form part of the wider Quantum and Soft Matter (QSM) research theme's capabilities in the School of Physics, Faculty of Science and Engineering, at the University of Bristol. The QSM theme is recognised as one of the UK's leading centres in the study of quantum materials – notably exotic / high temperature superconducting and magnetic materials. Research in the QSM theme has attracted significant research income over the last decades, including a helium liquefier, a range of 'wet' cryogenic systems, as well as hosting a Centre for Doctoral Training in Condensed Matter Physics. Given the recent challenges around the price and availability of helium globally, this turn-key closed-cycle system will provide a key additional level of flexibility and fast-turnaround for sample screening and basic characterisation, before utilising lower temperature and/or higher magnetic field measurements either in Bristol or at a range of facilities worldwide.

The equipment is comprised of two main components: (1) a state-of-the-art closed cycle cryostat with base temperature better than 1.8 K; (2) a superconducting magnet capable of applying fields in excess of 7 Tesla with high uniformity to a sample stage mounted inside the cryostat.

II.1.5) Estimated total value

Value excluding VAT: £150,000

II.1.6) Information about lots

This contract is divided into lots: No

II.2) Description

II.2.2) Additional CPV code(s)

- 38340000 Instruments for measuring quantities
- 38400000 Instruments for checking physical characteristics

II.2.3) Place of performance

NUTS codes

• UK - United Kingdom

II.2.4) Description of the procurement

The equipment will form part of the wider Quantum and Soft Matter (QSM) research theme's capabilities in the School of Physics, Faculty of Science and Engineering, at the University of Bristol. The QSM theme is recognised as one of the UK's leading centres in the study of quantum materials – notably exotic / high temperature superconducting and magnetic materials. Research in the QSM theme has attracted significant research income over the last decades, including a helium liquefier, a range of 'wet' cryogenic systems, as well as hosting a Centre for Doctoral Training in Condensed Matter Physics. Given the recent challenges around the price and availability of helium globally, this turn-key closed-cycle system will provide a key additional level of flexibility and fast-turnaround for sample screening and basic characterisation, before utilising lower temperature and/or higher magnetic field measurements either in Bristol or at a range of facilities worldwide.

The equipment is comprised of two main components: (1) a state-of-the-art closed cycle cryostat with base temperature better than 1.8 K; (2) a superconducting magnet capable of applying fields in excess of 7 Tesla with high uniformity to a sample stage mounted inside the cryostat.

II.2.5) Award criteria

Price is not the only award criterion and all criteria are stated only in the procurement documents

II.2.6) Estimated value

Value excluding VAT: £150,000

II.2.7) Duration of the contract, framework agreement or dynamic purchasing system

Duration in months

24

This contract is subject to renewal

No

II.2.10) Information about variants

Variants will be accepted: No

II.2.11) Information about options

Options: Yes

Description of options

The University requests the option to upgrade the superconducting solenoid magnet system to 14 Tesla or above, with appropriate power supply and control system.

II.2.13) Information about European Union Funds

The procurement is related to a project and/or programme financed by European Union funds: No

Section IV. Procedure

IV.1) Description

IV.1.1) Type of procedure

Open procedure

IV.1.8) Information about the Government Procurement Agreement (GPA)

The procurement is covered by the Government Procurement Agreement: Yes

IV.2) Administrative information

IV.2.2) Time limit for receipt of tenders or requests to participate

Date

9 May 2024

Local time

1:00pm

IV.2.4) Languages in which tenders or requests to participate may be submitted

English

IV.2.7) Conditions for opening of tenders

Date

9 May 2024

Local time

1:00pm

Section VI. Complementary information

VI.1) Information about recurrence

This is a recurrent procurement: No

VI.4) Procedures for review

VI.4.1) Review body

Royal Courts of Justice

The Strand

London

Country

United Kingdom