This is a published notice on the Find a Tender service: https://www.find-tender.service.gov.uk/Notice/005111-2022

Planning

H3AT enriched tungsten

United Kingdom Atomic Energy Authority

F01: Prior information notice

Prior information only

Notice identifier: 2022/S 000-005111

Procurement identifier (OCID): ocds-h6vhtk-031a93

Published 24 February 2022, 9:39am

Section I: Contracting authority

I.1) Name and addresses

United Kingdom Atomic Energy Authority

Culham Science Centre

Abingdon

OX14 3DB

Contact

Abigail Woods

Email

abigail.woods@ukaea.uk

Country

United Kingdom

NUTS code

UKJ14 - Oxfordshire

National registration number

N/A

Internet address(es)

Main address

http://www.gov.uk/government/organisations/uk-atomic-energy-authority

Buyer's address

https://uk.eu-supply.com/ctm/Company/CompanyInformation/Index/72814

I.3) Communication

The procurement documents are available for unrestricted and full direct access, free of charge, at

https://uk.eu-supply.com/app/rfq/rwlentrance s.asp?PID=44079&B=UK

Additional information can be obtained from the above-mentioned address

I.4) Type of the contracting authority

Body governed by public law

I.5) Main activity

Other activity

Fusion Research

Section II: Object

II.1) Scope of the procurement

II.1.1) Title

H3AT enriched tungsten

Reference number

T/AW039/22

II.1.2) Main CPV code

• 14755000 - Tungsten

II.1.3) Type of contract

Supplies

II.1.4) Short description

UKAEA wishes to investigate hydrogen retention and release from fusion relevant materials which have been irradiated to levels representing different timeframes inside a fusion reactor.

Self-ion damaged tungsten has already been investigated, but it is also highly desirable to investigate neutron damaged tungsten. This work has not been possible to date due to the activation issues after tungsten is irradiated by neutrons. This would lead to an unreasonably high dose rate to experimental staff.

If isotopically altered tungsten is obtained, then the level of activation from neutron irradiation can be significantly reduced. The dose rate to UKAEA staff will therefore also be significantly reduced.

II.1.6) Information about lots

This contract is divided into lots: No

II.2) Description

II.2.2) Additional CPV code(s)

• 14750000 - Cadmium, lutetium, hafnium, tantalum and tungsten

II.2.3) Place of performance

NUTS codes

• UKJ14 - Oxfordshire

II.2.4) Description of the procurement

UKAEA wishes to investigate hydrogen retention and release from fusion relevant materials which have been irradiated to levels representing different timeframes inside a fusion reactor.

Self-ion damaged tungsten has already been investigated, but it is also highly desirable to investigate neutron damaged tungsten. This work has not been possible to date due to the activation issues after tungsten is irradiated by neutrons. This would lead to an unreasonably high dose rate to experimental staff.

If isotopically altered tungsten is obtained, then the level of activation from neutron irradiation can be significantly reduced. The dose rate to UKAEA staff will therefore also be significantly reduced.

II.3) Estimated date of publication of contract notice

4 March 2022

Section IV. Procedure

IV.1) Description

IV.1.8) Information about the Government Procurement Agreement (GPA)

The procurement is covered by the Government Procurement Agreement: No